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Abstract
Kernel rootkits undermine the integrity of system by
manipulating its operating system kernel. External
hardware-based monitors can serve as a root of trust
that is resilient to rootkit attacks. The existing exter-
nal hardware-based approaches lack an event-triggered
verification scheme for mutable kernel objects. To ad-
dress the issue, we present KI-Mon, a hardware-based
platform for event-triggered kernel integrity monitor. A
refined form of bus traffic monitoring efficiently verifies
the update values of the objects, and callback verifica-
tion routines can be programmed and executed for a des-
ignated event space. We have built a KI-Mon prototype
to demonstrate the efficacy of KI-Mon’s event-triggered
mechanism in terms of performance overhead for the
monitored host system and the processor usage of the
KI-Mon processor.

1 Introduction

Kernel rootkits are a special class of malware that com-
promise an OS kernel; they pose severe threat to the mon-
itored host system as they can hide their attack traces to
stay undetected while persisting in their malicious ac-
tivities. Since rootkits place themselves in the lowest
kernel layer that has the highest privilege level in a sys-
tem, they can trick and compromise any host-based intru-
sion detection system running on the above layer, mak-
ing the detection system ineffective. Many researchers
have made active efforts to address rootkit attacks by
providing a safe execution environment where kernel in-
tegrity monitors can run with the root of trust estab-
lished below the kernel OS layer. These efforts can be
categorized into two types of approaches: Virtual Ma-
chine Monitor (VMM) based [19, 34, 31, 28, 37], and
hardware-based [29, 26, 10, 40]. Both VMM and hard-
ware platforms are used as safe execution environments
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for integrity monitoring, as a root of trust under the OS
kernel. However, since they are implemented in soft-
ware, VMMs also have to suffer from software vulner-
abilities. As the discoveries of VMM vulnerability con-
tinue [5, 4, 2, 3], more attacks can subvert the VMM
layer underneath the OS kernel [32].

External hardware-based approaches [29, 26] attempt
to utilize the underlying hardware as another root of
trust for integrity monitors, seeking physical isolation
from the monitored system. By deploying the integrity
monitor on an external hardware device, the monitor-
ing can persist even when the entire OS on the moni-
tored host system is compromised. One of the earlier ex-
ternal hardware-based monitors, Copilot [29] presented
a snapshot-based kernel integrity monitor implemented
as a peripheral device. It utilized periodically collected
snapshots of memory contents of the kernel static region
to perform a hash value comparison with a known good
value. In such approaches, increasing the frequency of
snapshot to monitor all the modifications of a rapidly
changing target leads to significant performance over-
head [26]. Therefore, we believe that event-triggered
verification is needed for monitoring mutable kernel ob-
jects.

Event-triggered monitoring techniques are relatively
common in VMM-based approaches. Hypercall inter-
ception, page fault interception, exception handling in-
terception, and other techniques using VM Exits in Hard-
ware Virtual Machines (HVM) [37, 17, 34, 38] are well-
known examples. By inserting additional codes into the
handlers of those events, a preset verifier routine can be
executed upon the occurrence of the events. However, in
contrast to VMM-based approaches, the hardware-based
event-triggered approaches are still in their infancy.

The first external hardware-based event-triggered
monitoring scheme was introduced in Vigilare [26]. Vig-
ilare is an immutable region snooper that is limited to the
detection of the existence of any write traffic, destined
for the monitored memory region on the host bus. In
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other words, an event in Vigilare only signifies an occur-
rence of a memory modification while it does not provide
any ability to extract the data value in the write traffic for
the invariant verification, nor does it provide any call-
back mechanism that could further verify the event for
consistent modification with respect to other related data
objects. Vigilare’s rudimentary scheme has been suffi-
cient for the immutable regions. However, it is incapable
of monitoring mutable kernel objects.

The contents of mutable objects in dynamic regions,
or dynamic data structures, are frequently modified by
the operating system kernel. Such a characteristic intro-
duces complexities in monitoring the mutable kernel ob-
jects. Since the modifications made to the mutable ob-
jects could be legitimate changes, resulting from the nor-
mal operations of a kernel, simply detecting the occur-
rence of modification to these structures does not provide
decisive evidence in determining whether the modifica-
tions are malicious or benign. In addition, there are cases
in which verifying the update value against a known good
value is not sufficient for integrity verification. Consider
the example of a linked list manipulation attack, where
the adversary removes an entry from a linked list to hide
the entry. Inspecting the linked list will reveal that the
entry has been removed. However, from this observa-
tion alone, we cannot determine if the entry was removed
by an adversary or legitimately removed by the kernel.
In these cases, additional semantic verification to check
the consistent modification of other related kernel data
structures is required to confirm the legitimacy of these
changes.

We propose an external hardware-based Kernel In-
tegrity Monitoring platform, called KI-Mon. To explore
possibilities of monitoring mutable kernel objects with
an event-triggered mechanism, KI-Mon presents archi-
tectural foundations of hardware-assisted event-triggered
detection and verification mechanism. KI-Mon is ca-
pable of generating an event which reports the address
and value pair of memory modification, occurred on the
monitored object. Event generation is refined with a sup-
port for whitelist-based filtering to eliminate unnecessary
software involvement in value verification. KI-Mon also
allows an event-triggered callback verification routine
to be programmed and executed for a designated event
space. In addition, we developed the KI-Mon API to
ensure the programmability of the platform, which sup-
ports development of monitoring rules. Example mon-
itoring rules were developed and tested against attacks
from real-world rootkits to confirm the effectiveness of
the platform. Also, our evaluation shows the efficacy of
event-triggered monitoring in terms of the performance
overhead to the monitored system using benchmarking
tools.

We built the KI-Mon prototype on a FPGA-based de-

velopment board, and evaluated the effectiveness of KI-
Mon with experiments. We used the STREAMBENCH
and RAMSPEED benchmarking tools for measuring the
performance overhead on the monitored system’s mem-
ory bandwidth. The results showed that the snapshot-
only monitor incurred a significant overhead to the mon-
itored host system’s memory bandwidth while KI-Mon
consumed significantly less CPU cycles due to its event-
triggered mechanism. This is because KI-Mon detects
memory modifications at hardware level using VTMU
which features an event filtering mechanism to eliminate
CPU cycles consumed by snapshot-based polling by 6
orders of magnitude.

2 KI-Mon Design

KI-Mon is an external hardware-based Kernel Integrity
Monitor that adapts an event-triggered mechanism to en-
able monitoring of dynamic-content data structures. To
achieve the desired functionality, we designed and im-
plemented a prototype of a platform that includes both
hardware and software components. The design objec-
tives for KI-Mon are summarized as the following:
O1. Safe Execution Environment: The most funda-
mental requirement for any kernel integrity monitor is a
safe execution environment. That is, a kernel integrity
monitor should be designed to be resilient to any type of
interference from the compromised monitored system.
O2. Event-triggered Monitoring: For an external mon-
itor to trace mutable kernel objects, it should be able to
identify any modification as an event that is comprised
of an address and value pair. As previously mentioned,
the update value is essential for verification of the legiti-
macy of the modification. In addition, there needs to be
a mechanism that allows a semantic verification routine
to be executed when the value of an event alone cannot
serve as proof that the modification is malicious. Fur-
thermore, KI-Mon deviates from periodic state captur-
ing techniques such as memory snapshots, implementing
a hardware platform that focuses on events, rather than
states. We further define the desiderata for an event-
triggered monitoring mechanism as below, in O2.1 to
O2.4.

O2.1 Refined event generation: For an external moni-
tor to trace mutable kernel objects, it should be able
to identify any modification as an event, comprised
of an address and a value pair. Furthermore, a re-
fined event can be generated from raw events by
suppressing commonly occurring benign updates at
the snooping hardware module, so that the verifier
can be engaged only when it is necessary.

O2.2 Event-triggered semantic verification: As
previously mentioned, the value is essential for
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verification of the legitimacy of the modification. In
addition, there needs to be a mechanism that allows
a semantic verification routine to be executed when
the value of an event alone cannot serve as a proof
that the modification is malicious. The routine
should reference other related kernel objects in
order to verify the semantic consistency.

O2.3 Minimal overhead on monitored system:
KI-Mon deviates from periodic state capturing
techniques such as memory snapshots, imple-
menting a hardware platform that focuses on
events, rather than states. An event-triggered
mechanism should also minimize performance
overhead inflicted on the monitored system during
its operation.

O2.4 Efficient monitoring processor usage: An
event-triggered scheme is expected to minimize
the workload, imposed on the monitoring proces-
sor. This minimization can be beneficial when
the amount of monitored data is larger and the
hardware cost of the monitoring processor needs to
be limited.

O3. Programmability: The operating systems maintain
a large number of various dynamic data structures during
run-time, and the format and usage of these data struc-
tures vary across different operating systems. Moreover,
kernel updates to the operating systems often change the
behavior of kernel operations that are related to the data
structures or the format of the data structures. For this
reason, KI-Mon needs to be highly programmable, in or-
der to guarantee a certain degree of portability across dif-
ferent operating system versions and to support develop-
ment of new monitoring algorithms. The details of the
KI-Mon design that address the above design objectives
will be explained in the rest of this section. Design objec-
tive O1 is achieved using KI-Mon’s hardware platform
by design. We developed KI-Mon API to provide pro-
grammability to KI-Mon. This programmability satisfies
design objective O3. Design objective O2.1 is addressed
by KI-Mon’s HAW mechanism; O2.2 is achieved by the
emphEvent-triggered Semantic Verification mechanism.
O2.3 and O2.4 will be further evaluated in Section 4.

2.1 Safe Execution Environment
The KI-Mon hardware platform is a complete
microprocessor-based system like those in existing
external independent processor approaches [26]. While
KI-Mon operates independently from the monitored
host system, it is capable of monitoring host memory
modifications with a bus traffic monitoring module
called Value Table Management Unit (VTMU) and a

Figure 1: KI-Mon Monitoring Mechanism

Direct Memory Access (DMA) Module for the monitored
system. The in-depth capabilities of VTMU and the
use of DMA will be further discussed in the rest of
this section, but it should be noted that their operations
do not involve the monitored system’s processor, nor
any other components on the monitored system. This
is made possible by the shared bus architecture, which
enables KI-Mon to inspect the monitored system. On
the other hand, the monitored system has no physical
connection to KI-Mon through which it could interact
with. In fact, the monitored system is not aware of the
existence of KI-Mon. Hence, KI-Mon ensures that its
monitoring activities are safe even when the monitored
host system is compromised by a rootkit. In this way,
KI-Mon achieves its first design objective O1: Safe
Execution Environment.

2.2 Event-triggered Monitoring
KI-Mon incorporates its hardware and software plat-
form. The hardware platform generates events when
modifications occur in the monitored regions. The soft-
ware platform verifies events as shown in Figure 1. The
explanation of this mechanism will start from the captur-
ing of host bus traffic in the hardware platform. It will
then explore how these captured instances of traffic are
passed up to the software platform for the further verifi-
cation.

2.2.1 Refined Event Generation

VTMU is the core component that monitors the host
memory bus traffic to generate events. Its operation can
be divided into three stages: bus traffic snooping, ad-
dress filtering, and value filtering. The bus of the mon-
itored system is fed into VTMU, and VTMU extracts
only write signals from the stream of the host’s memory

3
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I/O traffic. As the collected write signals pass through
the address filter, all signals except the ones correspond-
ing to the monitored region are discarded. Finally, the
signals are once again filtered in the comparator units.
The signals are compared against the preloaded values in
the whitelist registers. The signals with the address and
value pair, that survived the two-stage filtering, are re-
ported to the software platform, running on the KI-Mon
processor. We call this mechanism hardware-assisted
whitelisting (HAW); the reports, sent to the software plat-
form, are called HAW-Events.

Also, it should be noted that the VTMU is a highly
configurable hardware component, and our software
platform can readily adjust the monitored regions and the
whitelisted values. For instance, the whitelist registers
can be configured to be inactive, so that all write signals
to the monitored regions generate HAW-Events. In addi-
tion to VTMU, the DMA module is also implemented
and included in the KI-Mon hardware platform. The
module steals memory cycles of host processor to fetch
the contents from the host memory on an on-demand ba-
sis. When the software platform requests the contents
of a certain region of the host memory, the DMA mod-
ule takes a snapshot of the region and provides it to the
kernel integrity monitor. In summary, VTMU is capable
of monitoring host memory without constantly polling
host memory. It can also reduce the generation of benign
events by using a whitelist.

2.2.2 KI-Veri and MonitoringRules

Kernel Integrity Verifier (KI-Veri) is the main component
in the software platform, enabling the event-triggered
monitoring mechanism. It interfaces with Monitor-
ingRules, which are high-level objects implemented on
top of the KI-Mon API. Each MonitoringRule defines the
target regions to be monitored by VTMU, and such re-
gions are called critical regions. VTMU generates HAW-
Events when the contents of these regions are modified.
For this reason, the regions should be chosen prudently
so that a modification of the regions will serve as an
effective trigger to the monitoring mechanism. Critical
regions and their whitelists are stored in VTMU upon
the registration of MonitoringRules.A MonitoringRule
is also required to have predetermined actions such as
an HAW-Event Handler and an Integrity Verifier, to be
executed when HAW-Events occur in the critical re-
gions. These actions are fetched and executed by KI-
Veri. HAW-Event Handlers verify HAW-Events in or-
der to invoke other actions, such as Integrity Verifiers, as
needed.

In summary, VTMU monitors critical regions reg-
istered by MonitoringRules in KI-Veri, and generates
HAW-Events when a write signal that does not match any

of the values in the whitelist registers appears in critical
regions. Upon receiving a HAW-Event, KI-Veri executes
the HAW-event handler of the MonitoringRule, that is
responsible for the HAW-Event. Then, the HAW-event
handler triggers an action that corresponds to the pair of
the address and the update value.

2.2.3 Detection Methodology of MonitoringRule
Templates

The main focus of the current implementation of KI-Mon
is to propose an event-triggered monitoring scheme for
mutable kernel objects. Rootkit attacks on mutable ker-
nel objects can be classified into two categories: control
flow components and data components [19]. Control-
flow components are usually function pointers that store
the addresses of kernel functions. Since such control
flow components are referenced to execute the functions
located at the addresses, rootkits often place hooks on
such components to inject their routine into the control
flow.

Many data components or non-control-flow compo-
nents, store critical pieces of information that reflect the
current state of the kernel. Critical data components such
as lists of processes, kernel modules, and network con-
nections lists can be subverted by rootkits so that the
traces of rootkits are hidden. KI-Mon deploys two types
of MonitoringRule templates in its prototype for moni-
toring of control flow and data components: Hardware-
Assisted Whitelisting (HAW)-based Verification for con-
trol flow components and Callback-based Semantic Ver-
ification for data components.

Hardware-Assisted Whitelisting (HAW)-based
Verification: As we discussed in the previous section,
update value verification can serve as an indication of
malicious manipulations in some cases; semantic veri-
fication is otherwise imperative. Recall that a semantic
verification references other semantically related kernel
objects to find semantic inconsistencies. We observe
that value verification is particularly effective against
attacks on control flow components. All control flow
components should point to the functions in the kernel
code section, or functions in the known kernel drivers
loaded via loadable kernel modules. More specifically,
many control flow components in kernel dynamic data
structures always point to one possible landing site. We
define such property as the value set invariant of a kernel
object. We take advantage of this property in modeling
the monitoring scheme for control flow components.
HAW-based Verification is a MonitoringRule, where
the address of the control flow component is set as a
critical region and its possible landing sites as a whitelist
in VTMU. HAW-events, generated from this type of
MonitoringRule, are simply considered malicious.

4
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Callback-based Semantic Verification: Callback-
based Semantic Verification is a type of MonitoringRule,
which is designed to serve as a template for monitor-
ing kernel data components. The monitoring scheme
for control flow components is not suitable for monitor-
ing of modifications on data components that require se-
mantic verification because the processes of identifying
memory modifications and their values are inadequate
for detecting manipulation attacks on semantic informa-
tion. The HAW-Event handler can invoke the Integrity
Verifier for further inspection, which involves acquisi-
tion of semantically related data structures. This type of
Integrity checking is called the enforcement of seman-
tic invariants [12]. Note that the HAW-Event handler
can be programmed to call functions other than Integrity
Verifiers. This feature can be used to update the infor-
mation on the monitored data structure. For example,
detection of a newly inserted entry in a linked list can be
programmed and invoked by the HAW-Event handler.

2.3 KI-Mon API for Programmability

As previously mentioned, the MonitoringRules that op-
erate in KI-Mon are built with the KI-Mon API. The
KI-Mon API, as shown in Figure 4, includes high-level
software stacks and low-level drivers for the hardware
platform, to enable convenient and rapid development
of kernel integrity monitoring rules. KI-Mon API is de-
veloped so that writing new MonitoringRules, based on
our detection methodology, become convenient. It is
even possible to create entirely new algorithms. Thus,
KI-Mon API corresponds to our third design objective:
O3:Programmability. A more detailed explanation of the
internals of the API will be given in the following sec-
tion.

Figure 2: KI-Mon Hardware Platform. (Gray box shows
bus architecture)

3 Prototype Implementation

3.1 KI-Mon Hardware Platform Prototype

The KI-Mon platform, including the monitored host sys-
tem, is implemented as an System on a Chip (SoC) on
an FPGA-based prototyping system for rapid prototyp-
ing. Figure 2 shows the overall structure of our SoC
implementation. The monitored system, running on a
Leon3 [7] processor, configured to operate at 50 MHz.
Snapgear Linux with a kernel version of 2.6.21.1 [18],
provided from the provider of the Leon3 processor, was
used as the operating system for the monitored system.
Both KI-Mon and the host processor use an S-compatible
shared bus [9] as an interconnection network. As can be
seen from Figure 2, the KI-Mon hardware platform has
been built on the same architecture base as that of the
host processor system, being augmented with new fea-
tures with event-triggered monitoring capabilities.

Other than VTMU, the hardware platform also in-
cludes a DMA module and a hash accelerator to support
snapshot-related features. As previously discussed, the
DMA module takes snapshots of the monitored system’s
memory and stores them in KI-Mon’s private memory.
The DMA module has two master interfaces and one
slave interface. One of the two master interfaces is con-
nected to the monitored system’s bus. The other is con-
nected to KI-Mon’s bus. With the master interfaces, the
module is capable of reading any regions of the mon-
itored system’s memory; it can then copy the contents
to the designated space in KI-Mon. The slave interface,
which is connected to the KI-Mon bus, is used for KI-
Veri in the software platform to make requests for snap-
shots. The hash accelerator generates SHA-1 hash val-
ues from given memory contents. The hash accelerator
has both slave and master interfaces to the KI-Mon bus.
The slave interface is used to receive requests for hashing
a certain region and returning the calculated hash value
to KI-Mon, and the master interface is used to read the
memory regions to be hashed.

VTMU is a core component of the KI-Mon hardware
platform. It generates HAW-events by snooping the host
bus traffic for modifications, filtering the traffic based on
the addresses and the values being written. By doing so,
traffic with addresses that do not belong to the monitored
regions is ignored, as are benign modifications in which
a whitelisted value is written. As mentioned in the pre-
vious section, VTMU registers are configurable via the
driver we implemented. The addresses of the monitored
regions and corresponding whitelists can be passed to
VTMU at any time, so the operation of VTMU can be
controlled even during runtime. In addition, the monitor-
ing capacity, such as the total number of regions moni-
tored simultaneously or the length of the whitelist, can
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Figure 3: VTMU Internal Architecture Overview

be adjusted easily. More specifically, one can increase
the number of registers or simply place multiple VTMU
units in KI-Mon.

The operation of VTMU consists of three stages: bus
traffic snooping, address filtering, and value filtering.
The first stage of VTMU operations, bus traffic snoop-
ing, is implemented based on a shared bus architecture
that conforms to the AMBA 2 protocol. Modules at-
tached to the AMBA 2 AHB protocol bus are categorized
into masters and slaves. Masters are active modules that
access slave modules as needed, whereas slaves are pas-
sive modules that respond to the requests of masters. In
our implementation, the processor and DMA module are
master modules, and the memory controller (MCTRL),
serial port (UART), and VTMU are slave modules. The
gray box in Figure 2 shows the bus architecture of the
monitored system and the KI-Mon hardware platform.
Also, the connections of VTMU on the KI-Mon hard-
ware platform are shown. MuxM is a multiplexer unit
that passes only one master’s traffic to a slave. MuxM
is controlled by hardware logics called arbiters and de-
coders. These modules decide which master utilizes the
bus at each clock cycle. That is, only one master can
utilize the bus at each clock cycle, and all slaves receive
the same traffic from the master at each time. With this
hardware principle, we designed the bus traffic snoop-
ing stage of VTMU to acquire all memory traffic from
the monitored system by duplicating the output signals
of MuxM. The type of the traffic – whether the traffic in-
dicates a write operation or not – is checked with a simple
comparator, so that this stage only passes write-traffic to
the address filtering stage. The value filtering process is
the last stage of VTMU operations. The value filter is an
extension of the address filter in terms of the hardware
structure. While the address filter has 8 sets of 2 address
registers that store the starting and ending addresses of
the monitored regions, the value filter has 8 sets of 6 reg-
isters. This is because the 6 whitelist values correspond
to each of the 8 monitored regions.

Figure 4: KI-Mon API

The FIFO buffer stores the output of the filter until
that output is fetched by KI-Mon. Although a larger
FIFO would be more robust against bursty traffic, a
buffer length of 16 was sufficient for our current pro-
totype and experiment settings. The tag registers keep
track of whitelist values that match the occurred traffic.
The register is set once traffic hits the registers. With this
feature, KI-Mon can replace the values in the whitelist
registers as needed with the recently used values. For
instance, KI-Mon keeps the recently used values in the
whitelist registers and replaces those that have not re-
cently been used. The traffic that has passed through the
second stage is fed into the value filters. The value of
the traffic, or the value being written to the monitored re-
gions, is compared with the values stored in the whitelist
registers. If the traffic matches–meaning that this traf-
fic indicates benign changes–it is discarded; if the traffic
does not match, such bus traffic is stored in the FIFO
buffer unit. Finally, a HAW event is generated and trig-
gers KI-Veri to acquire the address and value pair, gener-
ated from the FIFO buffer. The overall view of VTMU’s
internal structure is illustrated in Figure 3.

3.2 KI-Mon Software Platform Prototype
KI-Veri, which is the main operator of the software plat-
form, is positioned at the monitor layer to coordinate
the monitoring rules, the API, and interactions with the
hardware components. The semantic layer implements
MonitoringRule, which defines the monitored regions,
whitelists, and corresponding actions. The data structure
layer adds abstractions to access the monitored system’s
raw memory contents, so that the raw data is parsed into
appropriate types and structures. Lastly, the raw data
layer contains the low-level drivers for the hardware plat-
form, which directly interacts with the monitored host
system’s memory interface. KI-Mon API consists of 913
lines of C code.

Upon the occurrence of an event, KI-Veri searches the
VTMU registers to find the MonitoringRule instance for
which the registers are reserved. Then, KI-Veri executes
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the HAW-event handler of the MonitoringRule instance
to verify which action needs to be invoked for the HAW-
event.

As shown in Figure 5, KI-Veri retrieves the pointer
to the MonitoringRule that is responsible for the HAW-
event. The HAW-event handler of this MonitoringRule
determines the action that needs to be taken for the given
addr and value pair. The pair contains the address, where
the modification has occurred and the value of the modi-
fication.

The class MonitoringRule is implemented as an
object-oriented C structure. It is designed to serve as a
template for writing a kernel integrity monitoring rule
on KI-Mon’s event-triggered mechanism. The class in-
cludes critical regions, corresponding whitelists, an ini-
tializer function, and the action functions. Figure 6 is a
pseudo code definition of the class MonitoringRule.

The CriticalRegion data structure defines the starting
and ending address of the monitored region as well as the
whitelist for the region. The initMonitoringRule can con-
tain initialization procedures such as acquiring of the ad-
dresses of the monitored data structures, which addresses
will be stored in the criticalRegion variable. The on-
HawEvent defines the action to be taken upon the arrival
of HAW-events from the hardware layer. If the Moni-
toringRule was of a HAW-based Verification template –
all write attempts to the monitored regions are consid-
ered malicious if they are not in the whitelist – the func-
tion can simply declare that an attack was detected. For
the MonitoringRules, which were written for a Callback-
based Semantic Verification template, onHawEvent can
call inspectIntegrity passing arguments as needed. Then,
the inspectIntegrity function verifies the modification re-
ported via HAW-event with memory snapshots collected
from the monitored system. Similarly, traceDataStruc-
tures can be called if onHawEvent sees that the HAW-
event generated signifies change in the location or size
of the monitored structure.

onHawEventFromVTMU(addr,value) {

monitoringRule = getMonitoringRuleFor(addr);

requiredAction = \

monitoringRule->HawEventHandler(addr,value);

if(requiredAction == INSPECT_NEEDED) {

monitoringRule->inspectIntegrity(argArray);

}

else if(requiredAction == RAISE_ALERT) {

monitoringRule->traceDataStructures(argArray);

}

else {

//Other requiredAction can be here

}

Figure 5: KI-Veri’s Main Routine

typedef struct MonitoringRuleType {

CriticalRegion criticalRegion;

void initMonitoringRule();

int (*onHawEvent)(addr,value);

int (*inspectIntegrity)(argArray);

int (*traceDataStructures)();

}MonitoringRule;

Figure 6: Class MonitoringRule

The functions and macros defined in the data struc-
ture layer can be used as building blocks for implement-
ing the action functions in MonitoringRules. The Data
Structure Acquisition Engine is the actual implementa-
tion of the layer. Memory snapshots extracted from the
monitored system’s memory are raw memory contents.
Since KI-Mon or any other external hardware monitor
does not have OS-managed metadata of the monitored
data structures, additional parsing and constructing of a
meaningful data structure out of the raw data is essential.

The Raw Data Layer consists of the low-level hard-
ware drivers that provide core functionalities for the up-
per layers. The VTMU Driver manages the memory
value verification units, which count up to 16 in our cur-
rent implementation. Each unit consists of 6 registers:
the first two registers store the starting and ending ad-
dresses of the interval to be monitored. The rest of the
registers store the whitelisted values referenced by the
comparators. It should be noted that the VTMU driver
only engages in the configuration of the hardware. That
means, the memory bus traffic monitoring can be effort-
lessly done in the hardware layer thus it is not neces-
sary for the driver to be running during the monitoring.
VTMU notifies the software stack of an event when a
write event to the monitored regions is detected. The
DMA Driver makes DMA requests to the monitored sys-
tem memory to acquire memory snapshots. The func-
tionality of the driver is rather straightforward: given
an address and size of a snapshot, it fetches the region
from the monitored system memory. The aforemen-
tioned Data Structure Acquisition Engine adds usabil-
ity to the snapshot-taking capability of the DMA mod-
ule. The Address Translation Engine translates the vir-
tual addresses of the monitored system into a physical
address. The Address Translation Engine implements
a virtual to physical address translation process of the
monitored system in KI-Mon. The Address Translation
Engine performs page table walks by fetching the corre-
sponding entries of the page table in the monitored sys-
tem’s memory.

7
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3.3 KI-Mon MonitoringRule Examples

In order to illustrate the monitoring capabilities of KI-
Mon and the programmability of its API, we developed
two MonitoringRule examples against the two real-world
rootkit attacks, ported to operate on the Linux kernel
running on our prototype, where the VFS hooking at-
tack from Adore-NG is an example of an attack on ker-
nel control-flow components and the LKM hiding attack
from EnyeLKM is a kernel data component manipulation
attack.

The two examples that we choose, represent real-
world rootkit attacks on control-flow and data compo-
nents. We analyzed the open source real-world rootk-
its [39, 16, 27, 33, 1] and referenced works that analyzed
the behaviors of well-known rootkits [42, 35, 22, 19]. Ta-
ble 1 summarizes some of the attacks on kernel mutable
objects identified from the rootkits. These well-known
rootkits manipulate both the control-flow and the data
components. It is noticeable that the VFS hooking at-
tack and its variants, which manipulates the control-flow
components of Linux Virtual File System including the
proc file system (VFS) [24, 14], are popular for being
deployed to hide files, processes, and network connec-
tions. Also, the LKM hiding was a common behavior
among the analyzed rootkits. The attack manipulates a
module->list structure to hide an entry in the Loadable
Kernel Module (LKM) list. The rootkits utilize LKMs
as a means to inject kernel-level code into the victimized
kernel, and they launch the LKM hiding attack once their
malicious code is loaded in the kernel memory space.

One of the two MonitoringRules we implemented is
built using the HAW-based verification template to de-
tect the VFS hooking attack. The other MonitoringRule
is built using the Callback-based Semantic Verification
template to demonstrate the detection of the LKM hid-
ing attack. The rest of this subsection provides the two
attack examples and our MonitoringRules in detail.

VFS Hooking Attack: The Virtual File System
(VFS) [24, 14] provides an abstraction to accessing file
systems in the Linux kernel; all file access is made
through VFS in the modern Linux kernel. The kernel
maintains a unique inode data structure for each file,
which includes a fops data structure that stores pointers
to the VFS operation functions such as open, close, read,
write, and so forth. Various critical information about the
kernel, such as the network connections and the system
logs, are stored in the form of a file and are queried via
the VFS interface. Rootkits are capable of directly ma-
nipulating the functionalities of VFS. More specifically,
they can hook the VFS operation functions of the fops
data structure in a file to manipulate the contents read
from it. Examples of malicious exploitation of VFS in-
clude hiding network connections or running processes,

Table 1: Examples of Attacks on Mutable Kernel Objects

Rootkit
Name

Target
Object Type

Object
Type

Adore-NG 0.41 inode->i ops Control-flow
component

task struct->
{flags,uid,...}

Data
component

module->list Data
component

Knark 2.4.3 proc dir entry Control-flow
component

task struct->
flags

Data
component

module->list Data
component

Kis 0.9 proc dir entry Control-flow
component

tcp4 seq fops Control-flow
component

module->list Data
component

EnyeLKM 1.3 module->list Data
component

associated with the attacker. In Linux, /proc [24] con-
tains important files that maintain system information.
By hooking the VFS data structure that corresponds to
/proc, the adversary can deceive administrative tools that
rely on /proc for retrieving system information.

VFS MonitoringRule: The implemented VFS Moni-
toringRule applies the HAW-based Verification method
to detect VFS hooking attacks on /proc in the Linux
filesystem. We observe that the VFS operation func-
tion pointers in the fops data structure store the addresses
of the legitimate filesystem functions. For instance, the
VFS function pointers of the data structure of a file in
a ext3 filesystem, point to ext3 operations in the kernel
static region. In the same way, the fops data structure of
a file in an NTFS file system includes pointers to NTFS
operations. Using this property, we apply HAW-based
Verification to detect this particular attack. The procedu-
ral flow of the monitor is as follows: First, we trace the
exact location of the fops data structure using the DMA
module and Address Translation Engine. Next, we set
the function pointers as critical regions of the Monitor-
ingRule, and the location of the operation functions of
the known file systems – such as ext3, ext2, and NTFS –
as the whitelist. With these settings, VTMU notifies the
onHawEvent function of the MonitoringRule, which will
subsequently provide notification of this likely malicious
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event.
LKM Hiding Attack: Many rootkits take advantage

of the Linux kernel’s support of LKM. Initially designed
to support extending of the kernel code during runtime
without modifying and recompiling the entire kernel,
LKMs often serve as a means to inject malicious code
into the highest privilege level in a system. Moreover,
adversaries often manipulate the linked list data structure
that maintains the list of loaded LKMs in order to con-
ceal malicious LKM loaded in the kernel. The following
code line frequently appears in rootkits that are injected
via LKMs:

list_del_init(&__this_module.list);

The kernel function list del init removes the given en-
try from the list in which it belongs. The developers of
rootkits insert the code into the module init function, so
that the malicious LKM will be removed from the linked
list upon its load. If the snapshot is not taken immedi-
ately, this attack cannot be detected because it removes
itself from the linked list as soon as it gets loaded.

LKM MonitoringRule: LKM MonitoringRule ex-
emplifies the Callback-based Semantic Verification tem-
plate used in KI-Mon. By setting the next pointer of the
LKM linked list head as the critical region of the Mon-
itoringRule, KI-Mon gets notified of the insertion of a
new LKM as well as the address of the newly inserted
module structure. When a new LKM is inserted, the on-
HawEvent function of the MonitoringRule is triggered,
and it requests the DMA module to obtain a snapshot of
the new module’s code region and the hash accelerator to
hash the contents of the region.

The rest of the procedure to verify if the new LKM
is hidden from the list is as follows. First, the monitor
waits for 30 milliseconds. Note that the wait time before
this check is arbitrary. However, many rootkit LKMs in-
clude codes that hide the LKMs in the initialization func-
tion [39, 16, 27, 33]. Second, the linked list is traversed
with the Data Structure Acquisition Engine to check if
the inserted LKM is still in the list. Third, if the LKM
is not found in the list, we walk the page table using the
Address Translation Engine to verify that the virtual to
physical address mapping that correspond to the LKM’s
code region has been deleted. The Linux kernel frees the
memory regions of the LKM upon its removal. There-
fore, the absence of the page table mapping to the region
once occupied by the LKM indicates that the LKM was
normally removed. In case mapping does exist, the last
step of the procedure is executed. Recall that the monitor
took a hash of the LKM’s code region: we compare this
hash against the hash of the current contents of the phys-
ical memory. If the two hashes match, this indicates that
the LKM that was not found in the linked list iteration,
is not properly freed from the memory. In other words,

the inconsistency between the LKM linked list and the
memory contents reveals the LKM hiding attack.

A page table consistency check is used to avoid the
hash comparison of the memory contents, which requires
additional processing time and memory bandwidth. The
Linux kernel allocates the memory space for LKMs us-
ing vmalloc and de-allocates with vfree. The vmalloc
function allocates a physically non-contiguous region of
the requested size. That is, the allocated region is not
necessarily contiguous in the physical memory, but is
mapped to contiguous virtual addresses. Such non-linear
mapping in the page table is deleted as the region is freed,
using the vfree function. Therefore, the fact that the map-
ping is deleted in the page table assures that the LKM
object is freed in the memory.

Even when page table mapping exists, it does not nec-
essarily mean that a hidden LKM attack has occurred be-
cause the region that had been allocated for the LKM
was possibly freed already and reallocated for another
data object. Thus, a hash comparison of the region is
necessary to verify the contents of the region. The ker-
nel constantly allocates and de-allocates memory blocks
from the non-contiguous memory regions for vmalloc re-
quests. Therefore, it is likely that the freed region that
used to hold a data structure object will soon be allocated
for new one.

The consistency check is performed once, 30 millisec-
onds after the detection of a new LKM. This Monitor-
ingRule for the LKM hiding attack, is effective against
known LKM hiding technique, deployed in many real-
world rootkits. However, it is possible that rootkits evade
the single fixed-timed check by delaying the execution
of LKM hiding using a timer. To cope with such eva-
sions, we can simply adjust the MonitoringRule to sched-
ule multiple random-interval checks for each occurrence
of an LKM loading. For instance, we let the time of first
check in seconds t1 at the interval [0,5], the t2 at [5,20],
and so forth. By setting the lower bound of the random
interval of tn sufficiently long, we render the hiding at-
tack ineffective; the longer the attacker has to wait, the
effectiveness of the attack substantially diminishes.

4 Evaluation

In this section, we explain the experiments conducted to
prove the effectiveness of the event-triggered mechanism
employed in KI-Mon. The VFS MonitoringRule and
LKM MonitoringRule were implemented as explained
in the previous section. Both successfully detected the
example rootkit attacks. In this section, we discuss the
implications of the experiment with respect to evaluating
the design objectives O2.3: Minimal overhead on mon-
itored region and O2.4: Efficient monitoring processor
usage, which are defined in Section 2.

9
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In addition to the experiments that will be presented
and discussed in this section, we conducted an experi-
ment on VTMU whitelist register replacement scheme
for large whitelists. While the replacement scheme im-
proves the scalability aspect of KI-Mon, it is rather sup-
plemental to the main experiments. Therefore the exper-
iment is not discussed in this section, but included in the
Appendix section.

In the first experiment, we measured the performance
overheads, inflicted on the monitored host system by KI-
Mon and by a snapshot-only monitor using the LKM
MonitoringRule example. Using the same example, KI-
Mon’s efficiency, in terms of the CPU usage of the
monitoring processor, is presented in the second exper-
iment. The third experiment, which is performed using
the LKM MonitoringRule example, compares the detec-
tion rate of KI-Mon’s event-triggered mechanism with
that of the snapshot-only monitor against frequently re-
curring LKM hiding attacks.

One desirable requirement for an external kernel in-
tegrity monitor is to minimize the performance overhead
imposed on the target system. Taking exhaustive mem-
ory snapshots would incur a memory bus contention,
which in turn would be a major cause of performance
degradation of the monitored system. KI-Mon mini-
mizes the performance degradation by applying efficient
event-triggered monitoring based on the VTMU hard-
ware module. The snapshot-only version of the VFS
monitor was implemented for this experiment. In ad-
dition to the monitoring of the inode data structure of
/proc, the monitor also performs hash checking on the
static regions of the kernel. This corresponds to the de-
fault MonitoringRule, which thwarts all modifications to
the static regions, in KI-Mon. Here, two benchmarks are
used, STREAMBENCH [25], and RAMSPEED [20] to
measure the impact on the memory bandwidth perfor-
mance of the monitored system. These two open-source
benchmark tools were ported to our platform with minor
modifications: we replaced the floating-point tests with
integer tests because the processor on our current proto-
type does not support floating-point instructions. In ad-
dition, we modified the total size of the memory used for
the benchmark because the monitored system only has
64 MB of RAM.

Figure 7 shows the average of 10 trials of the measure-
ment using the two benchmark tools. The snapshot-only
monitor inevitably incurs performance overhead that is
directly proportional to the frequency of the snapshot
taking. In order to monitor more dynamic data struc-
tures in the dynamic regions of a kernel, the frequency
needs to be increased accordingly. This is, however, an
inefficient approach to the monitoring of the dynamic re-
gions. KI-Mon implements an event-triggered monitor-
ing mechanism that overcomes this inherent limitation

Figure 7: Performance Impact of Snapshots on Moni-
tored System (Avg. of 10 trials): The performance over-
head caused by snapshot-only monitor increases as the
snapshot interval shortens. When the snapshot interval
falls below 1ms, the memory bandwidth of the monitored
system drops more than 20%.

of the snapshot-only monitor for an efficient form of dy-
namic region monitoring. The detection of modifications
in KI-Mon does not operate on a periodic basis; VTMU
filters memory modification events and trigger the soft-
ware platform only when an event requires further veri-
ficaiton.

4.1 Monitor Processor’s CPU Usage
Efficient usage of the CPU and memory bandwidth is
another beneficial aspect for a hardware-based external
monitor, such that the monitor can be implemented even
with less powerful hardware components. We inserted
checkpoints in the software components of KI-Mon and
the snapshot-only monitor to analyze the CPU usage of
the two monitoring mechanisms. We used the LKM hid-
ing attack example to illustrate the difference in CPU us-
age between KI-Mon and the snapshot-only monitor.

Figure 8 shows the execution timeline of the two mon-
itoring schemes. The clock() function, which is from the
standard Linux library, was placed at the beginning and
in the end of each functions to record processor times.
The snapshot-only monitor repeats the snapshot-based
polling before eventually capturing the existence of a
newly inserted LKM, whereas KI-Mon stays idle until a
HAW-event is received from VTMU. The snapshot-only
monitor keeps the external monitor’s CPU active with the
snapshot polling until the occurrence of an event.

Each block represents functions that are executed by
the LKM MonitoringRule upon the insertion of an LKM
by KI-Mon and the snapshot-only monitor. Note that the
functions executed after the detection of the events are
the same for both monitors. Each snapshot used in the
polling takes 400 microseconds of CPU time to read 16
bytes of the LKM linked list head. The getLKMHash()
took 5600 microseconds for 280 bytes to take a snapshot

10



USENIX Association  22nd USENIX Security Symposium 521

of the code section of the LKM. The checkLKM() spent
2000 microseconds of CPU time to iterate the LKM
linked list of 6 entries to find the newly inserted mod-
ule. Because it found that the newly inserted module is
missing in the list, it took another 1750 microseconds
of CPU time to look up the page table entry of the LKM
address. The compareHash() is finally executed and took
5600 microseconds to take a snapshot of the region that is
supposedly the code section of the hidden LKM to con-
firm that the LKM is indeed hidden. Thus, a total of
14950 microseconds of CPU time were used to verify the
event. KI-Mon only uses a total of 14950 microseconds
of CPU time for the example, whereas the snapshot-only
monitor uses additional CPU time for snapshot polling.
Although only a part of the snapshot polling is shown in
Figure 8, it should be noted that the polling is constantly
running to consume CPU time.

In addition, this particular trial represents a case in
which the snapshot-only monitor detects the LKM inser-
tion event; the snapshot-only monitor does not always
detect the event. Discussion of the detection rates will be
presented later in this section.

While Figure 8 shows the state of the CPU, Figure
9 compares CPU usage rates between the snapshot-only
monitor and KI-Mon. The CPU cycles consumed were
calculated from the processor times that we obtained for
8. Before the occurrence of the attack, the snapshot-only
monitor shows a steady usage over 106 cycles per sec-
ond while KI-Mon does not consume any CPU cycles.
At 18 seconds from the origin, an LKM hiding attack
was launched using the rootkit sample and both mon-
itoring mechanisms detected the modification and exe-
cuted the verification procedures, which consume CPU

Figure 8: CPU State during Operation of KI-Mon
and Snapshot-only Monitor: X-axis represents the time
elapsed in microseconds, and Y-axis represents the CPU
state as either busy or idle. The labels in each blocks are
the names of the functions being executed during that
time.

Figure 9: CPU Cycles Consumed in Operation of KI-
Mon and Snapshot-only monitor: X-axis represents the
time elapsed in seconds, and Y-axis represents the sum
of CPU cycles of the external monitor used in log-
scale. The vent at 18th second is the LKM hiding attack.
Snapshot-only monitor constantly consumes CPU cycles
whereas KI-Mon stays idle until an event is occurred.

cycles. The snapshot-only monitor consumes additional
CPU cycles to verify the event on top of the periodic
polling, whereas KI-Mon consumes only the required
number of cycles for verification.

The fundamental difference in the monitoring mech-
anisms is shown in this experiment. For the snapshot-
only monitor to detect an event that occurs with a time
interval of t seconds with a snapshot-polling frequency
of f hz, a total number of snapshots n is calculated as
t ∗ f . The times of occurrences of modification events
on the monitored data structures are often unpredictable.
For instance, connecting a new USB device to a Linux
machine might trigger the loading of a corresponding
driver LKM. Even for such unpredictable rare events,
however, the snapshot-only monitor has no choice but
to keep taking snapshots for possible events. Moreover,
the frequency of the snapshots may need to be increased
to keep up with frequently-changing objects, and this in-
creases the number of snapshots used for polling.

KI-Mon does not consume CPU cycles until an event
triggers its operation, whereas the snapshot-only moni-
tor continuously consumes a significant number of CPU
cycles until an event is captured. KI-Mon overcomes the
inefficiency of the snapshot-only model with its event-
triggered mechanism. VTMU replaces the snapshot
polling with bus traffic without consuming any CPU cy-
cles because it snoops the bus traffic for modification
events. Also, not all events need to be inspected in KI-
Mon’s mechanism since VTMU filters known legitimate
changes with HAW.

11
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Table 2: Detection rate against 100 trials of recurring
LKM hiding attack

1khz Snapshot Max-frequency
Snapshot
(over 10khz)

KI-Mon

4% detected 70% detected 100% detected

4.2 Detection Rate Against Recurring At-
tacks

The detection rates against frequent and recurring mod-
ifications were measured using an LKM hiding attack.
As explained in the previous section, many real-world
rootkits [1] hide themselves from the LKM linked list
when they load. Therefore, the head of the linked list
changes for a short period of time, then reverts to the
original value. We tested the detection rate for 100 oc-
currences of such an attack with KI-Mon and with the
snapshot-only monitor using 1khz and 10khz, the maxi-
mum frequency.

Table 2 shows the results of this experiment. The
snapshot-only monitor only detected 4% of the attacks
with a frequency of 1khz, and 70%, with a maximum
frequency that is over 10khz. On the other hand, KI-Mon
detected all occurrences of attacks. As shown in this
experiment, the snapshot-only monitor cannot reliably
detect all modifications even with full-throttle snapshot
polling. However, KI-Mon maintains a continuous view
on mutable kernel object with its event-triggered mon-
itoring mechanism. That is, VTMU’s bus traffic moni-
toring enables tracing of the history of the modifications
made to the monitored region. This indicates that KI-
Mon is capable of keeping a history of all modifications
of the monitored region.

There are cases in which the history of modifications
can be used for validation of integrity. This means that
the fact that value x was written to the region becomes
a trigger for the integrity verification condition y. To be
more concrete with the LKM hiding example, KI-Mon
detects all LKM insertion events, and then performs an
integrity validation for each one of those events. On the
other hand, the snapshot-only monitor only detects 70%
of the LKM insertions, with 30% of the events were not
even given an attempt for verification. The experiment
shows the inherent difference in the monitoring mecha-
nisms and proves why KI-Mon is more suitable for mon-
itoring of the dynamic regions of the kernel.

5 Related Work

KI-Mon is an external hardware-based platform that en-
ables event-triggered kernel integrity monitoring. Moni-
toring rules can be implemented using the KI-Mon API

to monitor mutable kernel objects with invariants. In
order to discuss the novelty of our work, we introduce
previous works about hardware-based integrity monitor-
ing, monitoring of mutable kernel objects in general,
and event-triggered monitoring. We also briefly discuss
works that adopt the concept of an independent auditor,
and VMM self-protection.

5.1 Hardware-based Kernel/VMM In-
tegrity Monitoring

Before VMM became a popular platform on which to
build kernel integrity monitors, several hardware-based
operating system kernel monitors were proposed. Zhang
et al. [43] was one of the first to propose the concept
of integrity monitoring with a coprocessor. Petroni et
al. [29] presented Copilot, an external hardware-based
kernel integrity monitor based on memory snapshot in-
spection for static kernel regions.

When virtualization technology emerged, many
VMM-based approaches to kernel integrity monitoring
were also introduced. A majority of works in ker-
nel integrity monitoring were implemented on VMMs
due to the ease of development. However, the expan-
sion of VMMs in both code size and complexity, as
well as the attention of researchers and attackers, pro-
pelled the discovery of vulnerabilities in VMMs them-
selves [5, 4, 2, 3]. As a consequence, works that strived
to secure the integrity of VMMs with the assistance
of hardware support were presented to address the is-
sue [10, 40]. An alternative approach was to implement
minimalistic VMMs, so that static analysis could be ap-
plied to the minimized attack surface to mitigate vulner-
ability [37, 23, 36].

HyperSafe [41] took a different approach. This work
proposed a self-protection scheme to ensure the integrity
of the static region and control flow of VMMs. Azab et
al. proposed HyperSentry [10], a VMM-integrity mon-
itor framework in which the root-of-trust is a hardware
component (Intel SMM). Recently, in line with Copi-
lot [29], Moon et al. presented Vigilare [26], which
introduces the concept of snoop-based monitoring for
static immutable regions of operating system kernels us-
ing SoC hardware.

5.2 Event-triggered Monitoring
Works that deploy event-triggered monitoring have been
presented, following the existing snapshot-based moni-
toring schemes. Payne et al. [28] presented Lares, which
provides a VMM-based platform to add hooks to the
monitored system for monitoring; however, their work
lacks monitoring schemes that use the proposed tech-
nique. KernelGuard [34] and OSck [19], mentioned
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in previous section, used the event-triggered monitor-
ing scheme in their works. KernelGuard, by hooking
the VMM hypercall, achieved an event-triggered method
to map and monitor dynamic regions of the kernel. In
addition, OSck adopted both snapshot-based and event-
triggered schemes, and used event-triggered schemes to
monitor static regions of the kernel.

Even though previous works have dealt with the mon-
itoring of kernel dynamic regions with event-triggered
monitoring, they are all designed on VMM-based plat-
forms. On the other hand, KI-Mon implements an
event-triggered monitoring scheme as well as having
a hardware-based platform on which the monitoring
scheme operates. VMM-based event-triggered tech-
niques such as hypercalls or page fault handler hooking
are limited to VMM-based platforms.

Vigilare was the first external hardware-based sys-
tem to introduce event-triggered monitoring with its bus
snooping [26]. However, its snooper module was only
capable of detecting the occurrence of write traffic on
a fixed immutable region. It could not extract a newly
updated value from a modification event, nor could it
trigger any further verification processing with the event.
Thus, Vigilare’s definition of an event is rather primitive
and was only sufficient for monitoring a fixed immutable
region in the kernel. In order to monitor mutable kernel
objects with invariants, KI-Mon refines event generation
from bus traffic monitoring by extracting an address and
value pair for each event; its hardware-assisted whitelist-
ing scheme eliminates unnecessary event generation for
repeated benign updates. Also, its callback-based seman-
tic verification scheme enables monitoring of mutable
kernel objects with semantic invariants.

5.3 Monitoring Dynamic Regions of Ker-
nel

Early works in integrity monitoring of operating system
kernels have focused on the integrity of static regions.
Since monitoring static regions is rather straightforward,
many kernel integrity monitors apply similar techniques
such as hash checking [29]. Unlike that for static re-
gions, monitoring of dynamic regions of kernels has in-
herent challenges. As studies have progressed in VMM-
based and hardware-based integrity monitoring, numer-
ous works on the monitoring of kernel dynamic regions
have been presented [6, 31, 34, 13, 30, 41, 15].

The contents of the dynamic regions of kernels can be
mainly put into two categories: control-flow related data
and non-control-flow related data. Monitoring the link-
ages of control-flow related data, which is also known as
Control-Flow Integrity (CFI), was introduced by Abadi
et al. [6]. Petroni and Hicks [31] defined State-Based
Control Flow Integrity (SBCFI) of Linux kernels. This

system is an approximation of CFI. They implemented
a monitor that checks the SBCFI of the Linux kernel
on a VMM-based platform. Rhee et al. proposed Ker-
nelGuard [34] to watch dynamic data of a Linux kernel
on a VMM-based platform. Carbone et al. proposed
KOP [15], which aimed to map dynamic kernel data
from a memory dump of the monitored system. More
recently, Hofmann et al. presented OSck [19], which
implemented existing monitoring schemes comprehen-
sively with the addition of self-created rootkit attacks and
detection mechanisms for monitoring kernel dynamic re-
gions on a VMM-based platform.

KI-Mon focuses on providing an event-triggered
mechanism as an architectural foundation for monitor-
ing mutable kernel objects with invariants. Although KI-
Mon’s main objective is not to monitor the dynamic re-
gions of a kernel as a whole, the architecture of KI-Mon
and its API leaves room for extensions that may cover
more mutable objects in the dynamic regions of the ker-
nel.

6 Limitations and Future Work

KI-Mon is a novel hardware-based platform of event-
triggered monitoring. Its concepts are shown through ex-
periments with a prototype. Nevertheless, development
of a new platform that incorporates both hardware and
software components is a rather formidable task. The
current prototype of KI-Mon is not at in its full maturity.
We describe the limitations of the current prototype in
this section.

The current prototype has a total of eight address reg-
isters for the snooper module. Depending on the required
monitoring coverage for KI-Mon, tens or even hundreds
of MonitoringRules might run concurrently, which in
turn may require a large number of address registers.
Design constraints such as hardware cost and chip area
would possibly limit the number of registers that can be
equipped. For this reason, we plan to explore the possi-
bility of improving the snooper module to utilize a dedi-
cated memory space in addition to the provided registers.
On the other hand, we can modify the host kernel’s mem-
ory allocation mechanism if the source code of the kernel
is provided. More specifically, the kernel can be modi-
fied to allocate the monitored data structure of the same
types in a contiguous physical memory space so that less
number of registers are required for efficient enforcement
of MonitoringRules.

We also consider a quantitative estimation of the re-
quirements for KI-Mon’s processing power as future
work. We used the same processor for the monitored
host and KI-Mon for the prototype. When the monitored
host operates at much faster clock speed compared to that
of our prototype, the processing power requirements for
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KI-Mon needs to be investigated. While it is fairly un-
complicated to design a snooper module that operates at
the bus clock speed of the host, the processing power re-
quirements for KI-Mon depend on several other factors
such as the required number of MonitoringRules and the
computation complexity of each rule. The snooper mod-
ule is designed to drop incoming HAW-events when its
queue is full, hence the optimum combination of the size
of the queue and processor speed of KI-Mon needs to be
explored.

This paper focuses on illustrating the capability of the
KI-Mon platform to efficiently enforce kernel invariants
with a principle of event-triggered monitoring. Although
the generation of invariants on mutable kernel objects
was not discussed as it would exceed the scope of this
paper, automation of kernel invariant extraction is an-
other avenue in kernel integrity monitoring. Existing
works in the topic aim to infer and enforce invariants for
each data structure type used in the operating system ker-
nel [12, 30]. Developing or adapting such tools, as well
as creating an API extension that can automatically build
monitoring rules for KI-Mon based on extracted invari-
ants, will be essential improvements for KI-Mon in terms
of applicability.

We discharge a few classes of attacks that are beyond
the scope of this paper. Attacks only tampering with
processor registers or caches are not considered in this
work. Although it might be theoretically possible to de-
vise a rootkit that can reside only in registers and caches,
it would be practically impossible to leave no footprint
in the memory or in the system bus. Such hypothetical
rootkits are not within the scope of this paper. Bahram
et al. [11] explain that the existing virtual machine intro-
spection tools are vulnerable to DKSM attacks. Just like
these VMM-based introspection tools, KI-Mon is also
vulnerable to such types of attack that exploit the seman-
tic gap between the monitor and the monitored host sys-
tem. Difficulties with semantic gaps are an innate weak-
ness of external monitors. To overcome the issue, one
possible extension [11, 38] would be the planting of an
in-host agent that can interact with KI-Mon. However, it
is also notable that KI-Mon is resilient to TLB poisoning
attacks. This is because, unlike VMM-based monitors,
KI-Mon does not depend on the TLB cache. Instead,
KI-Mon walks the host page tables to perform virtual to
physical address translation. The KI-Mon processor is
independent of the monitored host system, so it cannot
use the host processor’s TLB cache.

In addition, we assume that the caches on the host fol-
low a write-through policy, and that the update traffic to
registers will always appear on the bus. Today’s proces-
sors have a more than 2 level memory hierarchy. The
level 2 or higher caches usually use a write-back policy to
replace their cache contents. Therefore, if memory traf-

fic is monitored from outside these caches, much of the
memory access history would be lost. However, many
modern processors have a write-through policy for their
level 1 caches [21, 8]. In our hardware design, we con-
nect VTMU right below the L1 write-through cache so
that KI-Mon can monitor the whole memory access his-
tory of the host processor in a timely manner. This design
is viable for some architectures such as ARM Cortex,
which do not integrate an L2 cache inside the processor
core, but rather only include the L1 cache while provid-
ing an interface to the L2 cache that can be assembled
later into an SoC along with other hardware components
like VTMU.

7 Conclusion

In this paper, we have presented KI-Mon, an external
hardware-based monitoring platform that operates on
an event-triggered mechanism based on a VTMU hard-
ware unit. Unlike the existing external hardware-based
approaches, KI-Mon is an event-triggered verification
mechanism, designed to monitor the integrity of dynamic
regions of kernels.

We built the KI-Mon prototype on an FPGA-based de-
velopment board and evaluated the possibility of mon-
itoring dynamic data structures using LKM attack and
VFS attack examples. KI-Mon is designed to operate
independently of the monitored host system; thus, its op-
eration remains unaffected even when the host is com-
promised by a rootkit. The hardware platform monitors
the host bus traffic and generates events, assisted by its
whitelisting capability of filtering benign updates, so that
the monitor will not be triggered by common benign up-
dates. This HAW-generated event triggers the software
platform to execute verification routines. Also, the KI-
Mon API has been developed to support the programma-
bility of the monitoring rules that takes advantage of this
event-triggered verification scheme.

Our experiments have showed that KI-Mon consumes
significantly fewer CPU cycles due to its event-triggered
mechanism because it eliminates the need of constant
snapshot-based polling of the monitored region. We have
also showed that even at the maximum frequency, the
snapshot-only monitor missed 30% of LKM hiding at-
tacks, while KI-Mon was able to detect 100% of the at-
tacks. Overall, KI-Mon lays an architectural foundation
for an event-triggered kernel monitoring mechanism on
an external hardware-based monitor.
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A Appendix

A.1 VTMU Replacement Algorithm for
Large Whitelists

In order to utilize KI-Mon’s memory space as an additional
storage for whitelist values. We preliminarily implemented an
approximation of the LRU replacement scheme, which swaps
between the values in the registers and those in memory. The
tag registers is set when the value written to the monitored re-
gion matches the value in a whitelist register, all tag registers
are cleared when all the tag registers are set. KI-Mon compares
the update value with the whitelist values in the registers as well

as those in the memory. When a match has occurred with the
one in the memory, KI-Mon swaps the matched whitelist value
with a value in a register whose tag value is 0.

Figure 10: Whitelist LRU test results: X-axis of graph indi-
cates parameter h, length of history locality, and the legend in-
dicates the parameter r, the rate of locality. Y-axis of the graph
shows the hit ratio.

We evaluated the replacement scheme with an experiment in
which synthesized bus traffic was used as the input. The char-
acteristic of the synthesized bus traffic is modeled with two pa-
rameters: length of locality h and rate of locality r. We imple-
mented a traffic generator that writes a value to the monitored
the region of VTMU, so that the traffic will trigger the opera-
tion of the replacement scheme. The traffic generator chooses
a value out of the 100 whitelist values, which consist of h local
values and 100− h non-local values. Among these values, we
choose a local number out of the h local number with a proba-
bility of r, and presumably a non-local number from the 100−h
non-local pool with a probability of 1− r. Note that higher r or
lower h would generate a more local model in this setting.

Figure 10 shows the results of the experiment. We see that
for traffic patterns with less locality, which were generated with
higher h or lower r, the hit ratio is lower. This means that our re-
place scheme is less effectively utilized for this particular traffic
pattern. For cases with high locality, however, the hit ratio is
higher than 50% and tops out at 90%. Note that the number of
whitelist registers is much smaller than the whitelist, which has
100 entries. This means that the approximate preliminary LRU
scheme helps KI-Mon deal with large whitelists in situations
in which where the pattern of benign updates on the monitored
regions are local. For every miss, KI-Veri needs to manually
check if the modification is legitimate using the whitelist val-
ues that are stored in KI-Mon’s main memory. This procedure
takes a minimal number of CPU cycles; nevertheless, it could
burden the CPU in cases of bursty traffic. While the snapshot-
only model consumes CPU cycles for comparing any modified
value with the whitelist values for every detection of modifi-
cations, KI-Mon only needs to perform a comparison with a
probability of 1−hitratio.
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