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Abstract—External hardware-based kernel integrity monitors
have been proposed to mitigate kernel-level malwares. However,
the existing external approaches have been limited to monitoring
the static regions of kernel while the latest rootkits manipulate
the dynamic kernel objects. To address the issue, we present
KI-Mon, a hardware-based platform that introduces event-
triggered monitoring techniques for kernel dynamic objects. KI-
Mon advances the bus traffic snooping technique to not only
detect memory write traffic on the host bus but also filter out
all but meaningful traffic to generate events. We show how
kernel invariant verification software can be developed around
these events, and also provide a set of APIs for additional
invariant verification development. We also report our findings
and considerations on the unique challenges for external monitors
– such as cache coherency, dynamic object tracing. We introduce
host-side kernel changes that alleviate these issues that involve
changes in kernel’s object allocation and cache policy control. We
have built a prototype of KI-Mon on the ARM architecture to
demonstrate the efficacy of KI-Mon’s event-triggered mechanism
in terms of performance overhead for the monitored host system
and the processor usage of the KI-Mon processor.
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I. INTRODUCTION

Kernel rootkits are a special class of malware that compro-
mise an OS kernel. Since they place themselves in the highest
privilege layer within the system, any in-system detection
system becomes practically ineffective. Many researchers have
made active efforts to address rootkit attacks by providing a
safe execution environment where kernel integrity monitors
operate. Such efforts can be categorized into two types of
approaches: Virtual Machine Monitor (VMM) based [1]–[5],
and hardware-based [6]–[9].

However, the VMMs are also a piece of software and are no
exception to software attacks that target vulnerabilities [10]–
[13]. Moreover, It has shown that subverting the VMMs from
the guest OS kernel is quite possible [14]. For this reason,
External hardware-based approaches [6], [7] proposes the use
of an external hardware as a possible alternative root of trust
to the VMMs.

One of the earlier external hardware-based monitors, Copi-
lot [6] presented a periodic snapshot-based kernel integrity
monitor implemented as a PCI device. Vigilare introduced
an event-triggered monitoring architecture that employs a bus
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traffic snooper [7], to overcome transient attacks that may
exploit the time window inbetween snapshots. However, these
works are limited to monitoring a static kernel code and data
for modifications. Unfortunately, modern kernel rootkits evade
such rudimentary monitoring schemes by manipulating kernel
dynamic objects. Hence, the ability to verify dynamic objects
is imperative to a modern kernel integrity monitor. However,
monitoring the dynamic kernel objects from external has been
largely unexplored.

We propose an external hardware-based Kernel Integrity
Monitoring platform, called KI-Mon. To explore possibilities
of monitoring mutable kernel objects with an event-triggered
mechanism, KI-Mon presents architectural foundations of
hardware-assisted event-triggered detection and verification
mechanism. KI-Mon is capable of generating an event which
reports the address and value pair of memory modification,
occurred on the monitored object. Event generation is refined
with a support for whitelist-based filtering to eliminate un-
necessary software involvement in value verification. KI-Mon
also allows an event-triggered callback verification routine to
be programmed and executed for a designated event space with
the KI-Mon API. In addition, we developed the KI-Mon API
to ensure the programmability of the platform, which supports
development of monitoring rules. Example monitoring rules
were developed and tested against attacks from real-world
rootkits to confirm the effectiveness of the platform. On the
host side, we introduce minimal yet effective optimizations
on the host kernel that greatly simplifies the complexities
of external monitoring. Our evaluation shows the efficacy
of event-triggered monitoring in terms of the performance
overhead to the monitored system using benchmarking tools.
The KI-Mon prototype is built with the ARM Cortex A9
processor to explore the applicability of the proposed approach
for commodity processor architectures.

II. CHALLENGES IN EXTERNAL MONITORING

As introduced in the previous section, KI-Mon is designed
to be capable of monitoring dynamic mutable objects. While
it provides building blocks for writing kernel data invariant
verifiers, there remain formidable challenges that affect all
external monitoring techniques. We faced rather peculiar chal-
lenges that are unique to KI-Mon. In this section, we outline
the unique challenges that we came across in the process of
architecting the external security monitor. Then, our design
decisions and solutions will be presented in Section IV.
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A. Verifying Dynamic Contents

The contents of mutable objects in dynamic regions, or dy-
namic data structures, are frequently modified by the operating
system kernel. Such a characteristic introduces complexities in
monitoring the mutable kernel objects. Since the modifications
made to the mutable objects could be legitimate changes,
resulting from the normal operations of a kernel, simply
detecting the occurrence of modification to these structures
does not provide decisive evidence in determining whether
the modifications are malicious or benign. In addition, there
are cases in which verifying the update value against a known
good value is not sufficient for integrity verification. Consider
the example of a linked list manipulation attack, where the
adversary removes an entry from a linked list to hide the
entry. Inspecting the linked list will reveal that the entry
has been removed. However, from this observation alone, we
cannot determine if the entry was removed by an adversary or
legitimately removed by the kernel. In these cases, additional
semantic verification to check the consistent modification of
other related kernel data structures is required to confirm the
legitimacy of these changes.

B. Locating Objects for Monitoring

Unlike the static kernel region (i.e., code data section) the
dynamic objects that we seek to monitor are allocated during
runtime at an unpredictable address, and even become deallo-
cated unpredictably. This means that it is required for KI-Mon
to perform tracing of the target monitored objects to be able to
identify and monitor the objects. Tracing of dynamic objects is
a non-trivial task; while the task can be achieved by iterating
the pointer chains of objects, or alternatively by examining
the bookkeeping data structures used by kernel’s allocator.
Unfortunately this would inevitably introduce complexities to
the design of KI-Mon’s software. Moreover, iterating over
kernel memory involves using a number of memory snapshots
via KI-Mon’s DMA module. Carefully studying the issue and
possible solutions, we came to a conclusion that a minimal
and non-intrusive modification to the host kernel mitigate the
issue in a straightforward yet efficient way. This solution is
further explained in Section IV and Section V-C.

C. Cache Coherency Issue

The Cache Coherency issue may hinder the monitoring
capability of KI-Mon in limited cases. Under a write-back
cache policy,the memory operations made by software is not
directly applied to the memory but only on the in-processor
caches. It is when the data is evicted from the cache, the
memory addresses that correspond to the data are updated. KI-
Mon or any other external monitors do not have visibility into
the processor cache [6], [7]. Hence, the in-memory contents
that are inspected may be stale values whose updates were only
applied to their counterparts in the cache. Such discrepancy
between the cached value and its counterpart in DRAM may
cause a false-negative.

We further explored the issue, and we found rare cases
where a malicious data modification may be probabilistically

detected with our bus snooping. When data is overwritten then
restored to its original value immediately after, the intermedi-
ate value may not be visible to bus snooping. While most of the
attacks that subvert the control flow of kernel can not be done
effectively this way due to the lack of persistence. However,
we found that our sample rootkits that perform linked list entry
hiding exhibit such transient characteristic. These rootkits are
loaded as a form of Loadable Kernel Module (LKM), and
remove their module entry from the global loaded modules
list immediately upon loading. From the example, we learned
that there are cases where the presence of a write-back
cache policy needs to be taken into account. We explain our
mitigation to the issue. Also, the attack and our monitoring
rule implementation for the attack is detailed in Section V-D.

III. KI-MON PLATFORM DESIGN

KI-Mon is an external hardware-based Kernel Integrity
Monitor that adapts an event-triggered mechanism to enable
monitoring of dynamic-content data structures. To achieve
the desired functionality, we designed and implemented a
prototype of a platform that includes both hardware and
software components. The design objectives for KI-Mon are
summarized as the following:
O1. Safe Execution Environment:

The most fundamental requirement for any kernel integrity
monitor is a safe execution environment. That is, a kernel
integrity monitor should be designed to be resilient to any
type of interference from the compromised monitored system.
O2. Event-triggered Monitoring:

For an external monitor to trace mutable kernel objects,
it should be able to identify any modification as an event
that is comprised of an address and value pair. As previously
mentioned, the update value is essential for verification of the
legitimacy of the modification. In addition, there needs to be
a mechanism that allows a semantic verification routine to
be executed when the value of an event alone cannot serve
as proof that the modification is malicious. Furthermore, KI-
Mon deviates from periodic state capturing techniques such
as memory snapshots, implementing a hardware platform that
focuses on events, rather than states. We further define the
desiderata for an event-triggered monitoring mechanism as
below, in O2.1 to O2.4.
O2.1 Refined event generation: For an external monitor to

trace mutable kernel objects, it should be able to identify
any modification as an event, comprised of an address and
a value pair. Furthermore, a refined event can be gener-
ated from raw events by suppressing commonly occurring
benign updates at the snooping hardware module, so that
the verifier can be engaged only when it is necessary.

O2.2 Event-triggered semantic verification: As previously
mentioned, the value is essential for verification of the
legitimacy of the modification. In addition, there needs
to be a mechanism that allows a semantic verification
routine to be executed when the value of an event alone
cannot serve as a proof that the modification is malicious.
The routine should reference other related kernel objects
in order to verify the semantic consistency.
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O2.3 Minimal overhead on monitored system: KI-Mon
deviates from periodic state capturing techniques such
as memory snapshotsapp, implementing a hardware
platform that focuses on events, rather than states.
An event-triggered mechanism should also minimize
performance overhead inflicted on the monitored system
during its operation.

O2.4 Efficient monitoring processor usage: An event-
triggered scheme is expected to minimize the workload,
imposed on the monitoring processor. This minimization
can be beneficial when the amount of monitored data is
larger and the hardware cost of the monitoring processor
needs to be limited.

O3. Programmability: The operating systems maintain a
large number of various dynamic data structures during run-
time, and the format and usage of these data structures vary
across different operating systems. Moreover, kernel updates
to the operating systems often change the behavior of kernel
operations that are related to the data structures or the format
of the data structures. For this reason, KI-Mon needs to
be highly programmable, in order to guarantee a certain
degree of portability across different operating system versions
and to support development of new monitoring algorithms.
The details of the KI-Mon design that address the above
design objectives will be explained in the rest of this section.
Design objective O1 is achieved using KI-Mon’s hardware
platform by design. We developed KI-Mon API to provide
programmability to KI-Mon. This programmability satisfies
design objective O3. Design objective O2.1 is addressed by
KI-Mon’s HAW mechanism; O2.2 is achieved by the Event-
triggered Semantic Verification mechanism. O2.3 and O2.4
will be further evaluated in section VI.

A. Safe Execution Environment
The KI-Mon hardware platform is a complete

microprocessor-based system. While KI-Mon operates
independently from the monitored host system, it is capable
of monitoring host memory modifications with a bus traffic
monitoring module called Value Table Management Unit
(VTMU) and a Direct Memory Access (DMA) Module for
the monitored system. The in-depth capabilities of VTMU
and the use of DMA will be further discussed in the rest
of this section, but it should be noted that their operations
do not involve the monitored system’s processor, nor any
other components on the monitored system. This is made
possible by the shared bus architecture, which enables
KI-Mon to inspect the monitored system. On the other hand,
the monitored system has no physical connection to KI-Mon
through which it could interact with. In fact, the monitored
system is not aware of the existence of KI-Mon. Hence,
KI-Mon ensures that its monitoring activities are safe even
when the monitored host system is compromised by a rootkit.
In this way, KI-Mon achieves its first design objective O1:
Safe Execution Environment.

B. Event-triggered Monitoring
KI-Mon incorporates its hardware and software platform.

The hardware platform generates events when modifications

occur in the monitored regions. The software platform verifies
events as shown in Figure 1. The explanation of this mech-
anism will start from the capturing of host bus traffic in the
hardware platform. It will then explore how these captured
instances of traffic are passed up to the software platform for
the further verification.

1) Refined Event Generation: VTMU is the core compo-
nent that monitors the host memory bus traffic to generate
events. Its operation can be divided into three stages: bus traffic
snooping, address filtering, and value filtering. The bus of the
monitored system is fed into VTMU, and VTMU extracts only
write signals from the stream of the host’s memory I/O traffic.
As the collected write signals pass through the address filter,
all signals except the ones corresponding to the monitored
region are discarded. Finally, the signals are once again filtered
in the comparator units. The signals are compared against
the preloaded values in the whitelist registers. The signals
with the address and value pair, that survived the two-stage
filtering, are reported to the software platform, running on the
KI-Mon processor. We call this mechanism hardware-assisted
whitelisting (HAW); the reports, sent to the software platform,
are called HAW-Events.

Also, it should be noted that the VTMU is a highly
configurable hardware component, and our software platform
can readily adjust the monitored regions and the whitelisted
values. For instance, the whitelist registers can be configured
to be inactive, so that all write signals to the monitored regions
generate HAW-Events.

2) KI-Veri and MonitoringRules: Kernel Integrity Verifier
(KI-Veri) is the main component in the software platform,
enabling the event-triggered monitoring mechanism. It in-
terfaces with MonitoringRules, which are high-level objects
implemented on top of the KI-Mon API. Each MonitoringRule
defines the target regions to be monitored by VTMU, and
such regions are called critical regions. VTMU generates
HAW-Events when the contents of these regions are modified.
For this reason, the regions should be chosen prudently so
that a modification of the regions will serve as an effective
trigger to the monitoring mechanism. Critical regions and
their whitelists are stored in VTMU upon the registration of
MonitoringRules.A MonitoringRule is also required to have
predetermined actions such as an HAW-Event Handler and an
Integrity Verifier, to be executed when HAW-Events occur in
the critical regions. These actions are fetched and executed by
KI-Veri. HAW-Event Handlers verify HAW-Events in order to
invoke other actions, such as Integrity Verifiers, as needed.

3) Detection Methodology of MonitoringRule Templates:
The main focus of the current implementation of KI-Mon is
to propose an event-triggered monitoring scheme for mutable
kernel objects. Rootkit attacks on mutable kernel objects can
be classified into two categories: control flow components and
data components [1]. Control-flow components are usually
function pointers that store the addresses of kernel functions.
Since such control flow components are referenced to execute
the functions located at the addresses, rootkits often place
hooks on such components to inject their routine into the
control flow.

Many data components or non-control-flow components,
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store critical pieces of information that reflect the current
state of the kernel. Critical data components such as lists
of processes, kernel modules, and network connections lists
can be subverted by rootkits so that the traces of rootkits
are hidden. KI-Mon deploys two types of MonitoringRule
templates in its prototype for monitoring of control flow
and data components: Hardware-Assisted Whitelisting (HAW)-
based Verification for control flow components and Callback-
based Semantic Verification for data components.

Hardware-Assisted Whitelisting (HAW)-based Verifica-
tion: As we discussed in the previous section, update value
verification can serve as an indication of malicious manip-
ulations in some cases; semantic verification is otherwise
imperative. Recall that a semantic verification references other
semantically related kernel objects to find semantic incon-
sistencies. We observe that value verification is particularly
effective against attacks on control flow components. All
control flow components should point to the functions in the
kernel code section, or functions in the known kernel drivers
loaded via loadable kernel modules. More specifically, many
control flow components in kernel dynamic data structures
always point to one possible landing site. We define such
property as the value set invariant of a kernel object. We
take advantage of this property in modeling the monitoring
scheme for control flow components. HAW-based Verification
is a MonitoringRule, where the address of the control flow
component is set as a critical region and its possible landing
sites as a whitelist in VTMU. HAW-events, generated from
this type of MonitoringRule, are simply considered malicious.

Callback-based Semantic Verification: Callback-based
Semantic Verification is a type of MonitoringRule, which
is designed to serve as a template for monitoring kernel
data components. The monitoring scheme for control flow
components is not suitable for monitoring of modifications
on data components that require semantic verification because
the processes of identifying memory modifications and their
values are inadequate for detecting manipulation attacks on
semantic information. The HAW-Event handler can invoke
the Integrity Verifier for further inspection, which involves
acquisition of semantically related data structures. This type
of Integrity checking is called the enforcement of semantic
invariants [18]. Note that the HAW-Event handler can be
programmed to call functions other than Integrity Verifiers.
This feature can be used to update the information on the
monitored data structure. For example, detection of a newly
inserted entry in a linked list can be programmed and invoked
by the HAW-Event handler.

C. KI-Mon API for Programmability
As previously mentioned, the MonitoringRules that operate

in KI-Mon are built with the KI-Mon API. The KI-Mon API,
includes high-level software stacks and low-level drivers for
the hardware platform, to enable convenient and rapid devel-
opment of kernel integrity monitoring rules. KI-Mon API is
developed so that writing new MonitoringRules, based on our
detection methodology, become convenient. It is even possible
to create entirely new algorithms. Thus, KI-Mon API corre-
sponds to our third design objective: O3:Programmability. A

Fig. 1: KI-Mon Monitoring Mechanism

more detailed explanation of the internals of the API will be
given in the following section.

IV. DEDICATED MONITORED ZONE IN HOST KERNEL

As a mitigation to the inherent difficulties of external
monitoring in general, we introduce host-side optimization
that simplifies the complexities of external monitoring. More
specifically, we apply a minimal change in the kernel memory
management subsystem of the monitored host. The changes we
make are non-intrusive and architecture independent. In fact,
we reused the existing infrastructure in the kernel memory
management subsystem that are originally intended to support
DMA for peripheral devices. In addition, considering that a
set of custom kernel patches are usually required for accom-
modating hardware specifics of a newly developed System-on-
Chip (SoC), these changes are by no means complications in
terms of the practicality of the design. We explain the general
concept and benefits of the dedicated monitored zone, and we
further explain its inner workings in Section V-C.

A. Congregating Monitored Objects

Congregating the monitored objects in a designated moni-
tored zone brings two clear advantages to the KI-Mon plat-
form. First, we eliminate the need for complicated object
allocation/deallocation tracing by forcing kernel to allocate
the designated monitored objects in a dedicated monitored
area called ZONE KIMON. This way, all monitored objects
are congregated as they are allocated. Hence, KI-Mon can be
oblivious of allocation/deallocation, and detect any changes
occur within ZONE_KIMON then refer to the slab meta data
placed in the beginning of the page to find out the data type.
This eliminates the need for constantly tracking slab-related
kernel structures for locating objects that need to be monitored.

Second, congregation of the targets of monitoring signifi-
cantly simplifies the KI-Mon hardware design and also reduces
the production cost of the hardware. In order to minimize the
number of cycles consumed by each event processing on the
KI-Mon platform, we chose to use the address range registers
on the snooper instead of a memory space. By congregating the
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Fig. 2: ZONE KIMON is dedicated memory space in kernel
that is being actively monitored by KI-Mon. Monitored Ob-
jects can be placed in ZONE KIMON by calling allocation
functions with GFP_KIMON flag. Write-through holes that can
be monitored without cache effects can also be requested with
GFP_KIMON_WT flag

monitored objects, we can merge adjacent monitored regions
into one continuous region, allowing KI-Mon to monitor
more objects with fewer number of registers. This is a clear
advantage that can be taken from the congregation of the
monitored object, since addition of a large number of registers
on hardware is impractical in terms of cost.

We take advantage of the concept of zones in the Linux
memory management subsystem to create this monitored zone.
The Linux kernel memory is divided into zones to meet spe-
cific allocation requirements. For instance, the kernel reserves
the first 16 MB as ZONE_DMA on the x86 arhictecture due
to the limit in addressable memory space in the ISA bus
architecture. We reuse the concept and implementation of
zoned allocation built into the kernel’s memory management
subsystem to create ZONE_KIMON.

The selection of the zone to which the object is allocated
is determined by an allocation flag called GFP flag, that is
passed through kernel’s allocator functions such as kmalloc.
We introduce a flag called GFP_KIMON, in addition to the
existing ones such as GFP_NORMAL and GFP_DMA. Hence,
by changing the GFP flag of the callsites that invoke allocator
functions to allocate the objects that we intend to monitor, we
are able to force the objects into ZONE_KIMON.

This design allows reorganization of the kernel objects that
are to be monitored in a non-intrusive way. From the viewpoint
of a developer who is utilizing the KI-Mon platform, the
only difference is addition of a new GFP flag type. Most
kernel objects are allocated with the GFP_NORMAL. One
can place an object in ZONE_KIMON by simply flipping the
flag to GFP_KIMON. Regardless of the changes underneath,
our kernel modifications leave the use of the kernel memory
allocation APIs remains untouched with the exception of the
new GFP flag.

As we will discuss in more detail, all linux kernel objects
are essentially hosted by slab caches; that is, all objects are
a member of certain cache depending on their type. A slab
cache may span a single page or more. It should be noted
that placed at the beginning of the first page of a cache, is a
metadata structure that describe the cache. This enables KI-
Mon to identify the contents of slab caches in ZONE_KIMON
and apply a corresponding MonitoringRule.

B. Write-through Holes

As explained in Section II, we acknowledge that a cache-
coherent (i.e., write-through or no-caching policy) bus snoop-
ing may prove to be essential in detecting certain types of
rootkit attacks. To address the issue, we create a dedicated
write-through cache policy zone Within ZONE_KIMON. With a
write-through cache policy, each modifications made to the re-
gion is reflected on both processor cache and physical memory,
hence observable by KI-Mon’s VTMU. For allocating objects
into this particular area, we offer GFP_KIMON_COHERENT
GFP flag.

A cache-coherent memory may suffer from increased access
time compared to that of a write-back cached memory. While a
few number of write-through pages on a system do not incur a
significant performance overhead, it is still a trade-off between
performance and security in our design. For this reason, we
congregate all objects that need to be monitored in a cache-
coherent memory in a limited write-through hole created in
ZONE_KIMON.

V. PROTOTYPE IMPLEMENTATION

A. KI-Mon Hardware Platform Prototype

The KI-Mon platform and the monitored host system are
implemented as an SoC on a Xilinx Zynq-7000 prototyping
system. The host processor is the Cortex-A9 MP processor
[19] and the KI-Mon processor is the Microblaze [20] proces-
sor running at 50MHZ. Figure Figure 3 illustrates the overall
structure of our SoC implementation. The KI-Mon platform
and the host system are connected to an AXI-compatible
shared bus, enabling the VTMU and DMA module to acquire
bus traffic events and memory snapshots [21].

VTMU is a core component of the KI-Mon hardware
platform that generates HAW-events by snooping the host bus
traffic for modifications. VTMU filters the collected on-bus
packets based on the addresses and the values being written
to extract meaningful write traffic then notify the KI-Mon
processor. The VTMU registers are configurable even during
runtime via the driver we implemented.

The schematic of VTMU’s internal structure is illustrated
in Figure 4. The operation of VTMU consists of three stages:
bus traffic snooping, address filtering, and value filtering.
The first stage of VTMU operations, bus traffic snooping, is
implemented based on a shared bus architecture that conforms
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Fig. 3: KI-Mon Hardware Platform. (Gray box shows bus
architecture)
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to the AMBA 3 AXI protocol. Modules attached to the AMBA
3 AXL protocol bus are categorized into masters and slaves.
Masters are active modules that access slave modules as
needed, whereas slaves are passive modules that respond to
the requests of masters.

Along with VTMU, the hardware platform includes a DMA
module and a hash accelerator to support snapshot-related
features. The DMA module takes snapshots of the moni-
tored system’s memory and stores them in KI-Mon’s private
memory. The DMA module has two master and one slave
interface. One of the two master interfaces is connected to the
ARM Accelerator Coherency Port (ACP) [22] of the monitored
system, and the other to KI-Mon bus.

Our design takes advantage of the ARM ACP to achieve
cache-coherent DMA snapshots. By connecing the master
interface of the DMA module directly to the ARM ACP of
the monitored prcessor, the snapshot takings performed by the
module consults the host processor cache.

B. KI-Mon Software Prototype

Upon the occurrence of an event, KI-Veri searches the
VTMU registers to find the MonitoringRule instance for which
the registers are reserved. Then, KI-Veri executes the HAW-
event handler of the MonitoringRule instance to verify which
action needs to be invoked for the HAW-event.

As shown in Figure 5, KI-Veri retrieves the pointer to the
MonitoringRule that is responsible for the HAW-event. The
HAW-event handler of this MonitoringRule determines the
action that needs to be taken for the given addr and value
pair. The pair contains the address, where the modification
has occurred and the value of the modification.

The class MonitoringRule is implemented as an object-
oriented C structure. It is designed to serve as a template
for writing a kernel integrity monitoring rule on KI-Mon’s
event-triggered mechanism. The class includes critical regions,
corresponding whitelists, an initializer function, and the action
functions. Figure 6 is a pseudo code definition of the class
MonitoringRule.

AR#Channel#(Read#Address)
R#Channel#(Read#Data)

AW#Channel#(Write#Address)

Data#Collector

Effective#Address#
CalculatorID_Address_Queue

(Depth#8)

Register
Inteface Registers

Address/Value#Queue
(Depth#64#for#each)

Address/Value
Filter

AXI$Slave$GP0

AX
I$M

as
te
r$G

P0
AX

I$S
la
ve

VTMU

Fig. 4: The VTMU implementation on ARM architecutre

The CriticalRegion data structure defines the starting and
ending address of the monitored region as well as the whitelist
for the region. The initMonitoringRule can contain initializa-
tion procedures such as acquiring of the addresses of the
monitored data structures, which addresses will be stored
in the criticalRegion variable. The onHawEvent defines the
action to be taken upon the arrival of HAW-events from the
hardware layer. If the MonitoringRule was of a HAW-based
Verification template – all write attempts to the monitored
regions are considered malicious if they are not in the whitelist
– the function can simply declare that an attack was detected.
For the MonitoringRules, which were written for a Callback-
based Semantic Verification template, onHawEvent can call
inspectIntegrity passing arguments as needed. Then, the in-
spectIntegrity function verifies the modification reported via
HAW-event with memory snapshots collected from the mon-
itored system. Similarly, traceDataStructures can be called
if onHawEvent sees that the HAW-event generated signifies
change in the location or size of the monitored structure.

The functions and macros defined in the data structure layer
can be used as building blocks for implementing the action
functions in MonitoringRules. The Data Structure Acquisition
Engine is the actual implementation of the layer. Memory
snapshots extracted from the monitored system’s memory are
raw memory contents. Since KI-Mon or any other external
hardware monitor does not have OS-managed metadata of the
monitored data structures, additional parsing and constructing
of a meaningful data structure out of the raw data is essential.

The Raw Data Layer consists of the low-level hardware
drivers that provide core functionalities for the upper layers.
The VTMU Driver manages the memory value verification
units, which count up to 16 in our current implementation.
Each unit consists of 6 registers: the first two registers store the
starting and ending addresses of the interval to be monitored.
The rest of the registers store the whitelisted values referenced
by the comparators. It should be noted that the VTMU driver
only engages in the configuration of the hardware. That means,
the memory bus traffic monitoring can be effortlessly done in
the hardware layer thus it is not necessary for the driver to be
running during the monitoring. VTMU notifies the software

onHawEventFromVTMU(addr,value)
{

monitoringRule = getMonitoringRuleFor(addr);
requiredAction = \

monitoringRule->HawEventHandler(addr,value);
if(requiredAction == INSPECTION_NEEDED)
{

monitoringRule->inspectIntegrity(argArray);
}
else if(requiredAction == RAISE_ALERT)
{

monitoringRule->traceDataStructures(argArray
);

}
else
{

//Other requiredAction can be here
}

}

Fig. 5: KI-Veri’s Main Routine



1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679710, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

typedef struct MonitoringRule
{

CriticalRegion criticalRegion;
void initMonitoringRule();
int (*onHawEvent)(addr,value);
int (*inspectIntegrity)(argArray);
int (*traceDataStructures)();

}MonitoringRule;

Fig. 6: Class MonitoringRule

stack of an event when a write event to the monitored regions
is detected. The DMA Driver makes DMA requests to the
monitored system memory to acquire memory snapshots. The
functionality of the driver is rather straightforward: given an
address and size of a snapshot, it fetches the region from the
monitored system memory. The aforementioned Data Structure
Acquisition Engine adds usability to the snapshot-taking ca-
pability of the DMA module. The Address Translation Engine
translates the virtual addresses of the monitored system into
a physical address. The Address Translation Engine imple-
ments a virtual to physical address translation process of the
monitored system in KI-Mon. The Address Translation Engine
performs page table walks by fetching the corresponding
entries of the page table in the monitored system’s memory.

C. ZONE KIMON Implementation

Here we explain the KI-Mon specific changes to the kernel
along with brief explanations of the kernel subsystems to
which the modifications are made. The set of changes can
be either enabled or disabled during kernel compilation with
a kernel option called CONFIG_KIMON as with other SoC
specific kernel options. We made slight changes to the memory
initialization procedures during boot, the SLUB allocator, and
the Buddy allocator in order to create ZONE_KIMON.

During boot, the last N MB of ZONE_NORMAL, which
is the memory zone used for all regular allocations, is re-
served for ZONE_KIMON. In addition, we dedicate M MB
of ZONE_KIMON as a write-through hole – a cache-coherent
monitored memory space. The attributes of these pages are
set to feature a write-through cache policy such that all
value changes on the pages are immediately visible to KI-
Mon. The values of N,M can be adjusted to accommodate
the volume of monitored objects. Table I shows the size,
the number of objects present (at the time of measurement),
and the total memory space consumed by the object type.
Note that the total memory is calculated as the following:
(#slabs * pages per slab * PAGE SIZE). For our experi-
ments we used {16 , 2 MB} which could hold all present
task_struct, vm_area_struct, and mm_struct ob-
jects into ZONE_KIMON. The sizes of the zones can be
adjusted depending on the estimated total size of the monitored
object type.

The Buddy allocator is the kernel’s low-level memory
manager that keeps track of all pages assigned to each zone.
When requested pages from other components of kernel, the
Buddy allocator consults the GFP flag specified and selects a
zone that suits the request. Then, the allocator iterates the free
pages list of the selected zone to find a page that it can spare.

Our version of the Buddy allocator returns a page from
ZONE_KIMON or the write-through holes accordingly upon
receiving GFP_KIMON or GFP_KIMON_COHERENT. In ad-
dition, we slightly modified the Buddy allocator so that the
mutual exclusiveness of ZONE_KIMON and other zones is
ensured. That is, we modified the the optimizations that allow
cross-zone allocations and migrations on special occasions
(e.g. ZONE_NORMAL is running low) such that it does not
involve ZONE_KIMON. As a result, no allocation requests that
do not carry the GFP_KIMON flag receives a memory block
in ZONE_KIMON and vice versa.

The SLUB allocator is a high-level allocator in the kernel
that is built on top of the low-level Buddy allocator. The
SLUB allocator maintains a set of slab caches for different
object types. The general caches organized by allocation size,
so called kmalloc-N (i.e., kmalloc-8, kmalloc-16,
kmalloc-128) store all objects that are allocated by the
generic kmalloc function calls. Caches for specific ob-
ject type can also be created. For instance, the kernel cre-
ates a separate caches for frequently used objects such as
task_struct or inode [23], [24]. When the SLUB al-
locator needs free pages to expand an existing object cache or
create a new one, it invokes the Buddy allocator.

kmalloc(sizeof(monitored_struct),
GFP_KIMON);

(a) Creation of kimon-monitored SLAB cache

kmem_cache_create("monitored-struct-cache",
sizeof(monitored_struct),
0,
SLAB_CACHE_KIMON,
NULL);

(b) Allocating memory from KI-Mon slab cache

kmem_cache_alloc(monitored_struct_cachep,
GFP_KIMON);

(c) Allocating memory from general-purpose kimon slab cache

Fig. 7: Examples of ZONE KIMON object allocation via
kernel memory allocation APIs.

We added support for monitored object caches in the SLUB
allocator. Similar to the existing general caches, we added
kmalloc-kimon-N caches that reside in ZONE_KIMON.
This enables developers to invoke the kmalloc function with
GFP_KIMON and object size (which will be rounded) to have
the object placed in the monitored area as shown in Figure 7c.
Also we let a new monitored object cache can be created by
passing the SLAB_CACHE_KIMON flag to the object cache
creator function Figure 7a and allocate objects on the newly
created monitored object cache as in Figure 7b.

TABLE I: Sizes of Common Kernel Objects

obj Name obj size # objs total obj mem
task struct 2688 bytes 693 1848 kb

vm area struct 184 bytes 18722 3404 kb
mm struct 896 bytes 224 224 kb

dentry 192 bytes 515046 98104 kb
kmem cache 192 bytes 168 32 kb
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Our changes made to Buddy/SLUB allocator code is in-
cluded in the kernel code section which is monitored by
KI-Mon for immutability. For this reason, the SLUB code
that contains our ZONE_KIMON-related modifications cannot
be altered. In addition, the management data structure that
represents slabs (i.e., struct kmem_cache) is stored in
ZONE_KIMON for monitoring. Hence, the adversary cannot
subvert the slab data structure so that the monitored objects
to be placed in zones other than ZONE_KIMON.

D. KI-Mon MonitoringRule Examples

In order to illustrate the monitoring capabilities of KI-
Mon and the programmability of its API, we developed two
MonitoringRule examples against the two real-world rootkit
attacks, ported to operate on the Linux kernel running on our
prototype, where the VFS hooking attack from Adore-NG is
an example of an attack on kernel control-flow components
and the LKM hiding attack from EnyeLKM is a kernel data
component manipulation attack.

The two examples that we choose, represent real-world
rootkit attacks on control-flow and data components. We
analyzed the open source real-world rootkits [25]–[29] and
referenced works that analyzed the behaviors of well-known
rootkits [1], [30]–[32]. Table II summarizes some of the
attacks on kernel mutable objects identified from the rootkits.
These well-known rootkits manipulate both the control-flow
and the data components. It is noticeable that the VFS hooking
attack and its variants, which manipulates the control-flow
components of Linux Virtual File System including the proc
file system (VFS) [23], [33], are popular for being deployed to
hide files, processes, and network connections. Also, the LKM
hiding was a common behavior among the analyzed rootkits.
The attack manipulates a module->list structure to hide an
entry in the Loadable Kernel Module (LKM) list. The rootkits
utilize LKMs as a means to inject kernel-level code into the
victimized kernel, and they launch the LKM hiding attack once
their malicious code is loaded in the kernel memory space.

One of the two MonitoringRules we implemented is built
using the HAW-based verification template to detect the VFS
hooking attack. The other MonitoringRule is built using the
Callback-based Semantic Verification template to demonstrate
the detection of the LKM hiding attack. The rest of this
subsection provides the two attack examples and our Moni-
toringRules in detail.

VFS Hooking Attack: The Virtual File System (VFS) [23],
[33] provides an abstraction to accessing file systems in
the Linux kernel; all file access is made through VFS in
the modern Linux kernel. The kernel maintains a unique
inode data structure for each file, which includes a fops data
structure that stores pointers to the VFS operation functions
such as open, close, read, write, and so forth. Various critical
information about the kernel, such as the network connections
and the system logs, are stored in the form of a file and are
queried via the VFS interface. Rootkits are capable of directly
manipulating the functionalities of VFS. More specifically,
they can hook the VFS operation functions of the fops data
structure in a file to manipulate the contents read from it.

TABLE II: Examples of Attacks on Mutable Kernel Objects

Rootkit Name Target Object
Type

Object Type

Adore-NG 0.41 inode->i_ops Control-flow component
task_struct->
{flags,uid,...}

Data component

module->list Data component

Knark 2.4.3 proc_dir_entry Control-flow Component
task_struct->flags Data component
module->list Data component

Kis 0.9 proc_dir_entry Control-flow Component
tcp4_seq_fops Control-flow Component
module->list Data component

EnyeLKM 1.3 module->list Data component

Examples of malicious exploitation of VFS include hiding
network connections or running processes, associated with
the attacker. In Linux, /proc [33] contains important files
that maintain system information. By hooking the VFS data
structure that corresponds to /proc, the adversary can deceive
administrative tools that rely on /proc for retrieving system
information.

VFS MonitoringRule: The implemented VFS Monitor-
ingRule applies the HAW-based Verification method to detect
VFS hooking attacks on /proc in the Linux filesystem. We
observe that the VFS operation function pointers in the fops
data structure store the addresses of the legitimate filesystem
functions. For instance, the VFS function pointers of the data
structure of a file in a ext3 filesystem, point to ext3 operations
in the kernel static region. In the same way, the fops data
structure of a file in an NTFS file system includes pointers to
NTFS operations. Using this property, we apply HAW-based
Verification to detect this particular attack. The procedural
flow of the monitor is as follows: First, we trace the exact
location of the fops data structure using the DMA module
and Address Translation Engine. Next, we set the function
pointers as critical regions of the MonitoringRule, and the
location of the operation functions of the known file systems
– such as ext3, ext2, and NTFS – as the whitelist. With
these settings, VTMU notifies the onHawEvent function of the
MonitoringRule, which will subsequently provide notification
of this likely malicious event.

LKM Hiding Attack: Many rootkits take advantage of the
Linux kernel’s support of LKM. Initially designed to support
extending of the kernel code during runtime, The LKMs
are often used as a means to inject malicious code into the
highest privilege level in a system. Moreover, adversaries often
manipulate the linked list data structure that maintains the list
of loaded LKMs in order to conceal malicious LKM loaded
in the kernel. The following code line frequently appears in
rootkits that are injected via LKMs:

list_del_init(&__this_module.list);

The kernel function list del init removes the given entry
from the list in which it belongs. The developers of rootkits
insert the code into the module init function, so that the
malicious LKM will be removed from the linked list upon
its load. If the snapshot is not taken immediately, this attack
cannot be detected because it removes itself from the linked
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list as soon as it gets loaded.
LKM MonitoringRule: LKM MonitoringRule exemplifies

the Callback-based Semantic Verification template used in KI-
Mon. By setting the next pointer of the LKM linked list head as
the critical region of the MonitoringRule, KI-Mon gets notified
of the insertion of a new LKM as well as the address of the
newly inserted module structure. When a new LKM is inserted,
the onHawEvent function of the MonitoringRule is triggered,
and it requests the DMA module to obtain a snapshot of the
new module’s code region and the hash accelerator to hash
the contents of the region.

The rest of the procedure to verify if the new LKM is
hidden from the list is as follows. First, the monitor waits for
an arbitrary amount of time (30ms in our implementation).
This is to give enough time for the rootkit LKM initialization
procedure which often include code that hide the LKMs in
the initialization function [25]–[28]. Second, the linked list is
traversed with the Data Structure Acquisition Engine to check
if the inserted LKM is still in the list. Third, if the LKM is
not found in the list, we walk the page table using the Address
Translation Engine to verify that the virtual to physical address
mapping that correspond to the LKM’s code region has been
deleted. If the mapping does not exist we can assume that the
LKM code, whose representation in the linkedlist has been
removed, is also deleted on memory.

If the mapping does exist a hash check on the contents on
the region becomes necessary. This is because it can indeed
be a case of LKM hiding attack or that the region has already
been deallocated then re-allocated for other memory allocation
requests. Recall that KI-Mon has taken a hash of the LKM’s
code region: we compare this hash against the hash of the
current contents of the physical memory. If the two hashes
match, this indicates that the LKM that was not found in the
linked list iteration, is not properly freed from the memory. In
other words, the inconsistency between the LKM linked list
and the memory contents reveals the LKM hiding attack.

The fact that we could check the page tables first for
the LKM region mapping to avoid relatively more costly
hash checking, is because the kernel manages the memory
allocation and deallocation for the LKMs using vmalloc
and vfree or their variants. These functions make use of
the kernel’s vmalloc region whose address mappings are man-
aged dynamically. Hence, a vmalloc function call creates a
new mapping in the vmalloc region and vfree removes an
existing vmalloc region address mapping. This is unlike how
the kmalloc function and its variants operate; they merely
request or release memory chunks to the kernel’s SLUB
allocator which manages all pre-mapped kernel memory. We
take advantage of this characteristic of the LKM memory
allocation to minimize hash checks.

VI. EVALUATION

The two MonitoringRule types (VFS,LKM) are designed to
support all known memory attacks discovered in our collection
of real-world rootkits as explained in Section subsection V-D.
In this section, we evaluate the effectiveness of KI-Mon in
terms of performance detection capability.

A. Monitor Processor’s CPU Usage

Efficient usage of the CPU and memory bandwidth is an-
other beneficial aspect for a hardware-based external monitor,
such that the monitor can be implemented even with less
powerful hardware components. We inserted checkpoints in
the software components of KI-Mon and the snapshot-only
monitor to analyze the CPU usage of the two monitoring
mechanisms. We used the LKM hiding attack example to
illustrate the difference in CPU usage between KI-Mon and
the snapshot-only monitor.

Figure 8 shows the execution timeline of the two monitoring
schemes. The timer API for the Xilinx Zynq-7000 board was
used to measure the consumed CPU cycles of each functions.
As shown in the figure, the snapshot-only monitor repeats
the snapshot-based polling before eventually capturing the
existence of a newly inserted LKM, whereas KI-Mon stays
idle until a HAW-event is received from VTMU. The snapshot-
only monitor keeps the external monitor’s CPU active with the
snapshot polling until the occurrence of an event.

Each block represents functions that are executed by the
LKM MonitoringRule upon the insertion of an LKM by KI-
Mon and the snapshot-only monitor. Note that the functions
executed after the detection of the events are the same for
both monitors. Each snapshot used in the polling takes 400
microseconds of CPU time to read 16 bytes of the LKM
linked list head. The getLKMHash() took 5600 microseconds
for 280 bytes to take a snapshot of the code section of the
LKM. The checkLKM() spent 2000 microseconds of CPU
time to iterate the LKM linked list of 6 entries to find
the newly inserted module. Because it found that the newly
inserted module is missing in the list, it took another 1750
microseconds of CPU time to look up the page table entry
of the LKM address. The compareHash() is finally executed
and took 5600 microseconds to take a snapshot of the region
that is supposedly the code section of the hidden LKM to
confirm that the LKM is indeed hidden. Thus, a total of 14950
microseconds of CPU time were used to verify the event.
KI-Mon only uses a total of 14950 microseconds of CPU
time for the example, whereas the snapshot-only monitor uses
additional CPU time for snapshot polling. Although only a
part of the snapshot polling is shown in Figure 8, it should be
noted that the polling is constantly running to consume CPU
time.

While Figure 8 shows the state of the CPU, Figure 9
compares CPU usage rates between the snapshot-only monitor
and KI-Mon. The CPU cycles consumed were calculated from
the processor times that we obtained for Figure 8. Before the
occurrence of the attack, the snapshot-only monitor shows a
steady usage over 106 cycles per second while KI-Mon does
not consume any CPU cycles. At 18 seconds from the origin,
an LKM hiding attack was launched using the rootkit sample
and both monitoring mechanisms detected the modification
and executed the verification procedures, which consume CPU
cycles. The snapshot-only monitor consumes additional CPU
cycles to verify the event on top of the periodic polling,
whereas KI-Mon consumes only the required number of cycles
for verification.
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Fig. 8: CPU State timeline of KI-Mon on ARM prototyping board vs. Snapshot-only Monitor in execution of LKM Monitoring
Rule: X-axis represents the time elapsed in microseconds, and Y-axis represents the CPU state as either busy or idle. The labels
in each blocks are the names of the functions being executed during that time. KI-Mon stays idle prior to the occurrence of
monitor event, whereas snapshot-only monitor is keeping CPU busy due to snapshot polling.

The fundamental difference in the monitoring mechanisms
is shown in this experiment. For the snapshot-only monitor to
detect an event that occurs with a time interval of t seconds
with a snapshot-polling frequency of f hz, a total number of
snapshots n is calculated as t∗f . The times of occurrences of
modification events on the monitored data structures are often
unpredictable. For instance, connecting a new USB device to
a Linux machine might trigger the loading of a corresponding
driver LKM. Even for such unpredictable rare events, however,
the snapshot-only monitor has no choice but to keep taking
snapshots for possible events. Moreover, the frequency of the
snapshots may need to be increased to keep up with frequently-
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Fig. 9: CPU Cycles Consumed in Operation of KI-Mon and
Snapshot-only monitor: X-axis represents the time elapsed in
seconds, and Y-axis represents the sum of CPU cycles of the
external monitor used in log-scale. The vent at the 17th second
is the LKM hiding attack. Snapshot-only monitor constantly
consumes CPU cycles whereas KI-Mon stays idle until an
event is occurred.

changing objects, and this increases the number of snapshots
used for polling.

KI-Mon does not consume CPU cycles until an event
triggers its operation, whereas the snapshot-only monitor con-
tinuously consumes a significant number of CPU cycles until
an event is captured. KI-Mon overcomes the inefficiency of
the snapshot-only model with its event-triggered mechanism.
VTMU replaces the snapshot polling with bus traffic without
consuming any CPU cycles because it snoops the bus traffic for
modification events. Also, not all events need to be inspected
in KI-Mon’s mechanism since VTMU filters known legitimate
changes with HAW.

B. Write-Through Monitoring Zone
As mentioned in subsection V-C, ZONE_KIMON and our

changes to the kernel memory allocation APIs provide a way
to allocate a dedicated memory region that can be continu-
ously monitored with KI-Mon’s bus snooping mechanism. To
illustrate the effectiveness of this scheme, we conducted an
experiment on the detection performance of KI-Mon’s snooper
in normal memory(i.e., write-back cache memory) against the
dedicated cache-coherent memory region. We allocate a 4-byte
memory block in ZONE_NORMAL which is by default gov-
erned by the write-back cache policy. We initialize the memory
block to 0. Then, we increment the value in the block by 1
every 0.5 seconds using the kernel timer callback. The snooper
is directed at the memory block to detect any value change
that occurs in the block. We repeat the same experiment with
a write-through memory block from ZONE_KIMON that is
allocated by invoking kmalloc with the GFP_KIMON_WT
flag. Figure 10 illustrates the memory value changes detected
by the snooper in the two memory blocks with different cache
policies.

However, the write-through cache policy, that reflects all
memory content changes onto the memory continuously, is
innately inferior to the write-back cache policy in terms of



1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679710, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

Time Elapsed in Seconds
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y 

V
al

ue
 o

ve
r 

T
im

e

0

20

40

60

80

100

120

140

160

180

200
Snooped Memory Value Changes in Write-through cache page

(a) Snooping on page with write-through cache policy
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Fig. 10: A memory block, monitored by Snooper Module, was initialized to 0 and incremented by 1 every 0.5 seconds until
it reached 200. (a) and (b) shows detected memory changes when the block was in a page with either a write-through cache
policy or a write-back policy.

performance. For this reason, we see that there is a certain
tradeoff in monitoring a kernel object to detect all modifi-
cations in a timely manner, can be costly depending on the
access frequency of the monitored object.

We performed a set of simple microbenchmarks that esti-
mates the cost of using the write-through monitored zone in
ZONE_KIMON. We prepare two 10MB arrays – one governed
by the write-through cache policy and the other write-back.
We measured the processor’s cycle counter to measure the
total number of cycles elapsed for array initialization with
memset() for both write-through and write-back arrays.
We measured the cycles for array-to-array content copying
using the memcpy function for different source and destina-
tion cache policy combinations (e.g., WB→WB, WT→WT,
WB→WT). Each test was performed 100 times.

Figure 11 shows the result of the benchmark. Note that
the test was performed on the raspberry pi 2 board to rule
out any pecularities of the processor cache behavior on the
FGPA implementation. As shown in Figure Figure 11, the
performance degradation is rather significant when the write-
through array is the source of the memory transaction. The
inner workings of the processor cache are not explicitly
explained in the ARM architecture manual [34]. We consider
the results an indicative for the performance degradation of the
limited use of a write-through cache policy limitedly, and we
are still investigating the ARM architecture’s cache behavior.

VII. RELATED WORK

KI-Mon is an external hardware-based platform that enables
event-triggered kernel integrity monitoring. Monitoring rules
can be implemented using the KI-Mon API to monitor mutable
kernel objects with invariants. In order to discuss the novelty of
our work, we introduce previous works about hardware-based
integrity monitoring, monitoring of mutable kernel objects
in general, and event-triggered monitoring. We also briefly
discuss works that adopt the concept of an independent auditor,
and VMM self-protection.
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Fig. 11: Memory performance for write-through and write-
back cache policy using memset() and memcpy() on 10
MB arrays. WT denotes write-through and WB write-back
respectively. Y-axis represents number of cycles to complete
the task and labels on X-axis show source and destination
cache policy.

A. Hardware-based Kernel/VMM Integrity Monitoring

Before VMM became a popular platform on which to build
kernel integrity monitors, several hardware-based operating
system kernel monitors were proposed. Zhang et al. [35] was
one of the first to propose the concept of integrity monitoring
with a coprocessor. Petroni et al. [6] presented Copilot, an
external hardware-based kernel integrity monitor based on
memory snapshot inspection for static kernel regions.

When virtualization technology emerged, many VMM-
based approaches to kernel integrity monitoring were also
introduced. A majority of works in kernel integrity monitoring
were implemented on VMMs due to the ease of develop-
ment. However, the expansion of VMMs in both code size
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and complexity, as well as the attention of researchers and
attackers, propelled the discovery of vulnerabilities in VMMs
themselves [10]–[13]. As a consequence, works that strived to
secure the integrity of VMMs with the assistance of hardware
support were presented to address the issue [8], [9]. An
alternative approach was to implement minimalistic VMMs,
so that static analysis could be applied to the minimized attack
surface to mitigate vulnerability [5], [36], [37].

HyperSafe [38] took a different approach. This work pro-
posed a self-protection scheme to ensure the integrity of the
static region and control flow of VMMs. Azab et al. proposed
HyperSentry [8], a VMM-integrity monitor framework in
which the root-of-trust is a hardware component (Intel SMM).
Recently, in line with Copilot [6], Moon et al. presented
Vigilare [7], which introduces the concept of snoop-based
monitoring for static immutable regions of operating system
kernels using SoC hardware.

ATRA (Address Translation Redirection Attack) have shown
an illustration of attack that exploits the semantic gap between
the host and external monitor; the attack manipulates host’s
page tables and/or page table base register to relocate the
monitored objects in the virtual address space. KI-Mon is also
affected by the attack described in the paper.

B. Event-triggered Monitoring

Works that deploy event-triggered monitoring have been
presented, following the existing snapshot-based monitoring
schemes. Payne et al. [4] presented Lares, which provides
a VMM-based platform to add hooks to the monitored sys-
tem for monitoring; however, their work lacks monitoring
schemes that use the proposed technique. KernelGuard [2]
and OSck [1], mentioned in previous section, used the event-
triggered monitoring scheme in their works. KernelGuard,
by hooking the VMM hypercall, achieved an event-triggered
method to map and monitor dynamic regions of the kernel.
In addition, OSck adopted both snapshot-based and event-
triggered schemes, and used event-triggered schemes to mon-
itor static regions of the kernel.

Even though previous works have dealt with the monitoring
of kernel dynamic regions with event-triggered monitoring,
they are all designed on VMM-based platforms. On the
other hand, KI-Mon implements an event-triggered monitoring
scheme as well as having a hardware-based platform on which
the monitoring scheme operates. VMM-based event-triggered
techniques such as hypercalls or page fault handler hooking
are limited to VMM-based platforms.

Vigilare was the first external hardware-based system to
introduce event-triggered monitoring with its bus snooping [7].
However, its snooper module was only capable of detecting
the occurrence of write traffic on a fixed immutable region. It
could not extract a newly updated value from a modification
event, nor could it trigger any further verification processing
with the event. Thus, Vigilare’s definition of an event is
rather primitive and was only sufficient for monitoring a fixed
immutable region in the kernel. In order to monitor mutable
kernel objects with invariants, KI-Mon refines event generation
from bus traffic monitoring by extracting an address and value

pair for each event; its hardware-assisted whitelisting scheme
eliminates unnecessary event generation for repeated benign
updates. Also, its callback-based semantic verification scheme
enables monitoring of mutable kernel objects with semantic
invariants.

C. Monitoring Dynamic Regions of Kernel

Early works in integrity monitoring of operating system
kernels have focused on the integrity of static regions. Since
monitoring static regions is rather straightforward, many ker-
nel integrity monitors apply similar techniques such as hash
checking [6]. Unlike that for static regions, monitoring of
dynamic regions of kernels has inherent challenges. As studies
have progressed in VMM-based and hardware-based integrity
monitoring, numerous works on the monitoring of kernel
dynamic regions have been presented [2], [3], [38]–[42].

The contents of the dynamic regions of kernels can be
mainly put into two categories: control-flow related data
and non-control-flow related data. Monitoring the linkages of
control-flow related data, which is also known as Control-Flow
Integrity (CFI), was introduced by Abadi et al. [39]. Petroni
and Hicks [3] defined State-Based Control Flow Integrity
(SBCFI) of Linux kernels. This system is an approximation
of CFI. They implemented a monitor that checks the SBCFI
of the Linux kernel on a VMM-based platform. Rhee et al.
proposed KernelGuard [2] to watch dynamic data of a Linux
kernel on a VMM-based platform. Carbone et al. proposed
KOP [42], which aimed to map dynamic kernel data from
a memory dump of the monitored system. More recently,
Hofmann et al. presented OSck [1], which implemented ex-
isting monitoring schemes comprehensively with the addition
of self-created rootkit attacks and detection mechanisms for
monitoring kernel dynamic regions on a VMM-based platform.

KI-Mon focuses on providing an event-triggered mechanism
as an architectural foundation for monitoring mutable kernel
objects with invariants. Although KI-Mon’s main objective is
not to monitor the dynamic regions of a kernel as a whole, the
architecture of KI-Mon and its API leaves room for extensions
that may cover more mutable objects in the dynamic regions
of the kernel.

D. In-Kernel Privilege Separation

Our host-side monitored memory organization scheme
ZONE_KIMON relies on an assumption that the memory
mappings stay intact. This is to say that we need to be sure that
the ATRA or similar attacks cannot undermine ZONE_KIMON.
Fortunately, there has been a significant advancement in in-
kernel privilege separation. Nested Kernel removes all priv-
ileged instructions that may alter memory mappings (e.g.,
load new page tables) and lock down all page tables and
sensitive read-only kernel objects. Instead, it provides a set
of virtual MMU interface; a set of functions that include
privileged instructions to perform memory management tasks
are protected in a region. All access to the virtual MMU
interface is forced through a secure gate [16]. While Nested
Kernel is implemented on the x86 architecture, SKEE [17]
implements an idea on the same path on the ARM architecture.
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SKEE prevents kernel from performing memory management
tasks as nested kernel, and limits memory management privi-
lege exclusively to the isolated SKEE execution environment.
While we did not implement SKEE (whose source code is yet
to be released), we expect that it can be readily implemented
to aid KI-Mon in terms of memory management integrity such
that the mappings and memory attributes (i.e., cache policy)
of ZONE_KIMON is not maliciously manipulated.

VIII. LIMITATIONS AND FUTURE WORK

External integrity monitors including KI-Mon accesses the
host memory in physical addresses. On the other hand, all
software running on the monitored host reside in virtual
address space. Due to this semantic discrepancy, an attacker
may manipulate the virtual to physical paddress translations
to relocate parts of kernel memory to a new non-monitored
location [15].

Recent advancements in the endeavour to secure kernel
have shown that the memory management privileges of the
highest privilege level (i.e., Ring 0) can be confined to a small
verifiable TCB (Trusted Code Base) [16], [17]. The underlying
idea is to eliminate all memory management related privileged
instructions from everywhere in kernel but a compact TCB to
which the rest of the kernel code make memory management
requests via secure gates.

We expect that this in-kernel privilege separation can be em-
ployed in joint with KI-Mon to address the attack on memory
mappings. Additionally, by having a secure agent within the
in-host trusted code base, we expect a more interactive and
in-close monitoring scheme can be further developed. We are
planning on adapting the new kernel design on our prototype
as the most important future work.

IX. CONCLUSION

In this paper, we have presented KI-Mon, an external
hardware-based monitoring platform that operates on an event-
triggered mechanism based on a VTMU hardware unit. Unlike
the existing external hardware-based approaches, KI-Mon is an
event-triggered verification mechanism, designed to monitor
the integrity of dynamic regions of kernels.

We built the KI-Mon prototype for the ARM architecture
on an FPGA-based development board and evaluated the
possibility of monitoring dynamic data structures using LKM
attack and VFS attack examples. The hardware platform
monitors the host bus traffic and generates events, assisted by
its whitelisting capability of filtering benign updates, so that
the monitor will not be triggered by common benign updates.
This HAW-generated event triggers the software platform to
execute verification routines. Also, the KI-Mon API has been
developed to support the programmability of the monitoring
rules that takes advantage of this event-triggered verification
scheme. On the host side, we made necessary kernel changes
that make monitoring from external efficient as well as alle-
viating possible cache coherency issues.

Our experiments have shown that KI-Mon consumes signifi-
cantly fewer CPU cycles due to its event-triggered mechanism
because it eliminates the need of constant snapshot-based

polling of the monitored region. As to the application of write-
through cache policy on a monitored region, we performed
benchmarks that show the effect of the write-through cache
policy. Overall, KI-Mon lays an architectural foundation for an
event-triggered kernel monitoring mechanism on an external
hardware-based monitor.
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