
P2FAAS: Toward Privacy-Preserving Fuzzing
as a Service

Fan Sang, Daehee Jang, Ming-Wei Shih, Taesoo Kim
Georgia Institute of Technology

Abstract

Global corporations (e.g., Google and Microsoft) have re-
cently introduced a new model of cloud services, fuzzing-as-
a-service (FaaS). Despite effectively alleviating the cost of
fuzzing, the model comes with privacy concerns. For example,
the end user has to trust both cloud and service providers who
have access to the application to be fuzzed. Such concerns
are due to the platform is under the control of its provider
and the application and the fuzzer are highly coupled. In this
paper, we propose P2FAAS, a new ecosystem that preserves
end user’s privacy while providing FaaS in the cloud. The key
idea of P2FAAS is to utilize Intel SGX for preventing cloud
and service providers from learning information about the
application. Our preliminary evaluation shows that P2FAAS
imposes 45% runtime overhead to the fuzzing compared to
the baseline. In addition, P2FAAS demonstrates that, with
recently introduced hardware, Intel SGX Card, the fuzzing
service can be scaled up to multiple servers without native
SGX support.

1 Introduction
Fuzzing-as-a-service (FaaS) is an emerging paradigm to ac-
celerate the adoption of a popular bug finding technique,
fuzzing. FaaS services, such as Google OSS-Fuzz [8], Mi-
crosoft Security Risk Detection [21], and Fuzzbuzz [5], have
been designed to alleviate technical and operational burdens
of integrating fuzzing as part of software development: e.g.,
incorporating a well-known fuzzing driver, such as AFL [18],
that provides various mutation strategies for the software un-
der testing, and scaling it to a large number of servers on
demand.

However, such benefits come with serious privacy concerns
of the software, hindering the wider adoption of the fuzzing
technique. First of all, in the current FaaS model, developers
should trust the cloud provider, its underlying infrastructure,
as well as operators; it means that pre-released software un-
der active development has to leave out of the developer’s
complete control. Second, since the fuzzing techniques are
continuously discovering 0day vulnerabilities, malicious (i.e.,
compromised or curious [4]) cloud providers would face some
incentives to monetize the security bugs without disclosing
them to the software developers. Third, such limitations are
the concerns of not just the users (i.e., software developers)
but cloud providers as well: the cloud providers should spend
more operating costs to manage the security of the infrastruc-

ture and the users’ software, as well as to avoid the damage
of the users’ reputation when leaked.

We propose a new ecosystem that preserves users’ privacy
while servicing fuzzing on the cloud, shortly P2FAAS. The
key idea is to utilize a modern, commodity trusted execution
environment (TEE), called Intel SGX, as the root of trust.
It not only helps FaaS’ users eliminate the cloud provider
from the trust domain, but also helps the FaaS providers
focus on taking advantage of the economy of scaling without
worrying about users’ privacy. We believe fuzzing can be
a killer application of SGX for two reasons: 1) fuzzing is a
CPU intensive task avoiding the current memory limitation
of SGX, and 2) when the active working set is small, SGX
provides near-native performance so that developers do not
have to trade performance—fuzzer’s great strength—off for
privacy.

This paper attempts to draw a picture of an end-to-end
ecosystem of the SGX-enabled FaaS that addresses the pri-
vacy concerns of end-users as well as the scalability and early
adoption of the fuzzing service. P2FAAS provides a toolchain
that assists developers to package their software for testing in
a privacy-preserving manner (§4.2) securely scaling to multi-
ple servers as necessary (§4.3), and helps the cloud operators
to adopt it even on a legacy server with an extension card,
Intel SGX Card (§4.4). We make P2FAAS as an open-source
project to inspire and direct current FaaS providers to foster
the fuzzing techniques for broader audience in a convenient
and privacy-aware manner.
Summary. This paper makes the following contributions:

• We propose an end-to-end ecosystem, P2FAAS, that
adopts, for the first time, SGX and SGX Card, envi-
sioning the first steps toward implementing the privacy-
preserving FaaS.

• We propose techniques to hide crashing information,
called oblivious crash, and to scale it on a larger number
of servers without minimal, if not none, performance
degradation.

• We make it open source to enlighten the FaaS communi-
ties to show how to address the current privacy concerns
that developers encounter in adopting FaaS.

2 Background and Related Work
Fuzzing. The idea of fuzzing is providing randomly mu-
tated inputs to a program that aims for triggering abnormal
behaviors such as crashes representing potential bugs. This

1

ar
X

iv
:1

90
9.

11
16

4v
1

 [
cs

.C
R

]
 2

4
Se

p
20

19

process allows fuzzing to execute automatically and detect
bugs with high accuracy. To improve the effectiveness of
fuzzing, one direction is to increase the throughput of fuzzing.
Approaches for this direction include scaling up the fuzzing
with distributed machines [7] and designing specialized sys-
tem support [30]. Another direction is to improve the strategy
of the seed selection; that is, inputs derived from a seed that
trigger more execution paths of the program usually lead to
more bug findings.

Fuzzing as a service. Instead of physically owning and
maintaining multiple machines for fuzzing, end-users now
have an option to fuzz their applications on the cloud via
"fuzzing as a service" (FaaS). The idea of FaaS has service
providers to set up the fuzzing infrastructure, typically in-
volves numbers of machines, on the cloud such that end users
can fuzz their applications with a pay-as-you-go model. The
existing service providers include cloud providers themselves
(e.g., Microsoft and Google) and third parties (e.g., Fuzzbuzz
and Fuzzit). Although FaaS makes fuzzing more accessi-
ble and successfully finds thousands of bugs in real-world
applications, privacy concerns arise.

Intel SGX Applications. Communities have proposed
several SGX-based solutions for preserving privacy in ex-
isting applications. The examples include network func-
tions [26, 24], anonymity network [14, 13], and machine
learning [22, 11]. To the best of our knowledge, P2FAAS is
the first work that uses SGX to address the privacy problem
with FaaS.

Intel SGX Card. Although quickly becoming a general se-
curity feature in recent desktop-focused CPUs, SGX receives
relatively small support in server-class CPUs that cloud plat-
forms typically adopt. To fill this gap, Intel has recently
introduced new hardware, the Intel SGX Card. Intel SGX
Card is a re-configured graphic card that consists of three
independent, SGX-capable CPUs. Similar to a graphic card,
the Intel SGX Card is pluggable to multi-socket server CPUs
(connected via PCIe interfaces), and each CPU can have up to
four such cards. As a result, the cards allow both an SGX- and
a none-SGX-capable CPU to have additional SGX support
with a high resource density. Moreover, opposed to buying
new SGX-capable machines, adding the cards to existing ones
is more cost- and space-efficient. These advantages make the
Intel SGX Card an optimal, practical option in response to
the growing demand of SGX support in the cloud [6, 19].

3 Overview
3.1 Threat Model

The setting of P2FAAS involves three parties, including a
cloud provider who offers SGX-capable platforms, a service
provider who sets up fuzzers with enclaves in the cloud plat-
forms and offers fuzzing as a service, and an end-user who
uses the service to fuzz her application. Among these parties,
P2FAAS assumes the cloud provider is the only untrusted

one—either being compromised or simply because of the
other parties do not fully trust—who aims for obtaining in-
formation about the fuzzer and the application which both
are proprietary. Having full control over the cloud platforms,
the cloud provider can intercept all the incoming and outgo-
ing network traffic. Further, the cloud provider can freely
analyze an initial program binary to be running inside an
enclave. However, our model assumes the program binary
does not contain memory corruption vulnerabilities that al-
low for control-flow hijacking and memory leaks. Although
SGX ensures the confidentiality of the enclave during its run-
time, the cloud provider may still learn information about
the enclave based on observable behaviors such as crashes.
Our model considers side-channel attacks [9, 31, 16] against
SGX as out of scope. However, existing side-channel mitiga-
tions [27, 10, 23] are applicable to P2FAAS.

3.2 Goals

1 Privacy-preserving. P2FAAS considers two types of pri-
vacy: a fuzzing instance and its runtime behavior. The fuzzing
instance includes a target program and a fuzzer that provides
mutated inputs. In addition to prevent the cloud provider from
accessing the program and the fuzzer, P2FAAS also aims for
protecting the inputs, especially for ones that trigger crashes.
Leakage of such inputs indirectly discloses the vulnerabilities
of the program. Moreover, P2FAAS aims to prevent the cloud
provider from directly inferring the observable runtime be-
havior, more specifically, crashes. The occurrence of crashes
directly affects the reputation of end users (i.e., indicating the
number of bugs in the program).
2 Performance. Runtime performance directly contributes
to the quality of fuzzing services (i.e., number of bugs found).
Poor performance reduces the quality of service and weakens
the motivation of using the service. Therefore, naïvely trading
performance for privacy in the case of fuzzing is not accept-
able. P2FAAS aims to maintain the fuzzing performance
while achieving privacy preservation (1).
3 Deployability. P2FAAS aims for being deployable to ex-
isting cloud platforms. One aspect for this requirement is that
platforms should provide SGX support that P2FAAS depends
on. For platforms that already provide native SGX support,
such as Microsoft Azure [20] and IBM Cloud [12], P2FAAS
is directly deployable. For platforms provide SGX support via
additional hardware (e.g, Intel SGX Card), P2FAAS should
also accommodate to such environment. The other aspect is
that P2FAAS should allow for easily adoption; that is, the ser-
vice provider requires minimal effort to scale up the fuzzing
service across multiple machines regardless of the type of
SGX support (native or non-native).

4 P2FAAS Design
4.1 Workflow
We provide a detailed walk-through of steps to achieve a
complete service cycle with P2FAAS, as shown in Figure 1.

2

End userService provider

Cloud provider

Fuzzer Program Fuzzer API

fuzzer programcompiler compiler

loader

SGX Host

NO-SGX Host

corpus

SGX Card

P2FP2F P2F

fuzzer program

fuzzing instance
P2F

➌

➋

➍

4 x

➏

➎
input

feedback

➎

Figure 1: Design overview of P2FAAS.

1 Fuzzing toolchain. The service provider develops a com-
plete fuzzing tool-chain in order to provide fuzzing service.
Those tools include, but not limited to, a fuzzer and cor-
responding public APIs, a compiler that generates binaries
conform to SGX programming practices, and a loader that
loads both the fuzzer and the target program into SGX en-
clave memory. Although parts of the fuzzing toolchain, the
compiler and loader are not privacy sensitive but publicly
available and verifiable, serving as trusted anchors to assist
further provisioning of the fuzzing instance into trusted SGX
enclave memory.
2 Service tool provisioning. The toolchain loader devel-
oped by the service provider will be provisioned to SGX
enclaves by cloud providers before fuzzer APIs are released
to the public. Once provisioned, the cloud provider will be
ready to accept fuzzing instance submissions and serve end-
users with fuzzing service.
3 Applying fuzzer API. The prospective end-user integrates
fuzzer APIs released by the service provider into the target
program during development, and compiles the program using
the toolchain compiler. Usages of fuzzer APIs vary across
different fuzzers and is up to the service provider to specify.
4 Fuzzing instance provisioning. The target program bi-
nary will be submitted to the cloud provider after being com-
piled by the end-user. Meanwhile, the service provider will
be notified and the corresponding fuzzer binary matching the
fuzzer API usages of the target program will also be submitted
to the cloud provider. The toolchain loader will then load the
fuzzer binary and the target program binary into individual
SGX local enclaves when both are present.
5 Fuzzing instance execution. After both the fuzzer and tar-
get program binaries are loaded into SGX enclaves, execution
of the fuzzing instance starts. Necessary service information
is transmitted constantly via the trusted communication chan-
nel between local enclaves. Specifically, the fuzzer generates
and passes numerous inputs to the target program for execu-
tion, and the target program passes back essential feedback
information to the fuzzer for consumption (e.g., coverage
feedback, crashes).
6 Fuzzing results. Finally, the fuzzing service periodically
sends fuzzing results (e.g., crashes triggered) back to the

end-user via a trusted communication channel between the
cloud provider and the end-user. The trusted communication
channel can either be established as TLS using SGX Remote
Attestation, as suggested by Intel [15], or other methods spec-
ified by the providers.
4.2 Oblivious Crash
The fuzzing instance is naturally protected since it entirely
resides in SGX enclave memory. However, program behav-
iors especially crashes, require additional protection mecha-
nisms as the cloud provider is directly aware of such events.
P2FAAS resolves this challenge by introducing a technique
called oblivious crash. Whose name adopted from oblivious
memory, oblivious crash hides the actual crash behavior from
observers. That is, by randomly generating fake crashes from
the target program after fuzzer instrumentation, the crashing
behavior is normalized and external observers cannot distin-
guish real crashes from fake ones.

Not only that, P2FAAS also utilizes fakes crashes as heart-
beat messages to attest availability and legitimacy of cloud
provider. On one hand, fake crash results with extended
time interval indicates reduced network condition, and failing
to deliver fake crashes periodically indicates lost of service
availability. On the other hand, degraded fake crash heartbeat
quality might also indicate potentially malicious operations
are performed, e.g. the cloud provider pauses the execution
and attempts to distinguish fake crashes. P2FAAS provides
the end user with a handful way to sense such situations
upon experiencing different heartbeat behaviors, and react
accordingly.
4.3 In-Memory Corpus Management
One of the significant performance bottlenecks of SGX appli-
cation is OCalls. To minimize OCalls while fuzzing, P2FAAS
keeps the corpus and coverage map inside the enclave as long
as the memory can tolerate. From the initial fuzzer setup,
P2FAAS reads in every content of the shared corpus directory.
Afterwards, corpus related operations such as mutating and
pruning are done inside the memory. If the memory is over-
whelmed, or the corpus status is significantly updated, the
in-memory corpus is synced with the shared corpus directory.
Ultimately, the shared corpus directory selectively holds the
corpus that maximizes the code coverage.
4.4 Platform-independent Architecture
Similar to traditional fuzzing in parallel [30], P2FAAS
fuzzing instances can easily run on multiple SGX-capable
nodes in parallel to scale up execution speed. However, as
shown in Figure 1, there are two types of platforms within
cloud providers: SGX-capable platforms and SGX-incapable
ones. Likely, instances reside in different cloud providers
consist of a mixture of those two types of platforms.

In order to deploy P2FAAS fuzzing instances on multiple
cloud nodes in parallel and achieve the performance scalabil-
ity without platform restriction, P2FAAS considers Intel SGX
Card as the most economical and pluggable SGX enabler for

3

SGX-incapable platforms. Mutated inputs are shared via the
network across all P2FAAS fuzzing instances (shown by 5 in
Figure 1), either hosted on natively SGX-capable platforms,
or hosted on SGX nodes inside Intel SGX Cards. Therefore,
P2FAAS achieves platform-independent deployability and
scalability by treating each SGX-incapable platforms as sev-
eral (3-12) SGX-capable nodes enabled by Intel SGX Cards.
We further show that distributing P2FAAS to SGX nodes
enabled by Intel SGX Card achieves the same performance
scalability as by multiple natively SGX-capable instances
in section §6, proving that Intel SGX Card is the key to
maximize P2FAAS deployability and scalability.

5 Implementation

We implemented the prototype of P2FAAS with roughly 1,000
lines of C code on top of existing open source projects (SGX-
Shield [25] and libfuzzer [17]). The prototype includes a
fuzzer, a customized toolchain, and an in-enclave loader.

Fuzzer. For simplicity, our fuzzer adopts the model of
libfuzzer, which is a part of the target program, allowing the
program to fuzz itself. We leave the fuzzer decoupling from
the program as future work. Our fuzzer is tailored to dealing
with the limitations of SGX (e.g., limited memory and no
syscall capabilities). For example, to implement the mutation
engine without OCalls, we use sgx-rand for randomness
entropy. Ultimately, the fuzzer exports a call-back API similar
to the fuzz-driver in libfuzzer.

Toolchain. P2FAAS service user should port their code with
the provided call-back API; that is, compiling the program
with our toolchain (Clang/LLVM 4.0) with a new sanitizer
option (-fsanitize=sgxfuzz) for the LLVM pass. The com-
piled program automatically generates both coverage informa-
tion and crash reports during the fuzzing. Our implementation
uses 4KB edge coverage map similar to AFL. To optimize the
runtime performance (i.e., minimizing the number of ECalls
and OCalls), we maintain the seed corpus inside the enclave
and only synchronize it with the file system when needed.

Oblivious crash. To implement oblivious crash, we added
a fake-crash generator as a part of the LLVM pass. The
Fake-crash generator randomly chooses a time between the
pre-configured interval. If a real crash does not occur until
the configured time period, the instrumented program triggers
crash. The crash is caused by invalid memory access to
random address (using the sgx-rand API). Upon crashes (real
or fake ones), the instrumented program sends out the crash
report. To further hide the crash information, we can encrypt
the report.

Cloud provider. For P2FAAS cloud provider, we setup an
SGX host (Intel i7-6700K) and a No-SGX host (Intel Xeon
E5-2620) with two Intel SGX Cards. We pin the fuzzer to
each of cores for distributed fuzzing. For corpus and coverage
synchronization, we use network file system (NFS) interface.

0
0.5

1
1.5

2
2.5

3
3.5

4

10 20 30 40 50 60 70 80 90 100

#
cr

as
h/

m
in

Time (minutes)

Real
Fake

Real+Fake

Figure 2: Oblivious crash behavior (normalized 3 crash/min) while
fuzzing the toy fuzz-driver with 50 memory access bugs injected.

6 Evaluation
In this section, we evaluate the achievement of privacy
preservation, the usability and performance characteristics of
P2FAAS.
Experiment setup. We ported three fuzz-drivers: (i) typical
toy example for libfuzzer/AFL (byte-to-byte string match), (ii)
arithmetic expression evaluator (30 LoC), and (iii) C-ARES
DNS API from Google fuzzer-test-suite (1,225 LoC). Our
evaluation numbers are based on an average of ten iterations.
6.1 Privacy Preservation
While the fuzzing instance is protected by relying on SGX
security guarantees, P2FAAS target program raises random
fake crashes based on a configurable normalized crash fre-
quency to obfuscate its runtime behavior (oblivious crash).
Figure 2 shows the outcome of a normalized 3 crashes per
minute. Specifically, the frequency of real crashes starts with
a spike and decreases as time progresses. Such runtime behav-
ior is normalized by injecting fake crashes with an inverted
frequency distribution. The resulting observable crash be-
havior is represented by Real+Fake in Figure 2, where the
crash frequency appears stable over time. By applying such
techniques to normalize crash frequencies, real crashes are
indistinguishable from fake ones, thus protecting the runtime
behavior of the target program.
6.2 Usability
One of the major challenges affecting P2FAAS usability is
porting the target program into SGX, as SGX does not na-
tively support system calls. To evaluate P2FAAS with our
libfuzzer-based implementation, 15 OCalls are added in the
fuzzer to accommodate SGX environment. For end users,
depending on the target program and fuzzer interface, number
of required OCalls can significantly differ. In our evaluation,
we selected target programs that do not invoke system calls
to avoid adding OCalls.

For the toy and arithmetic parser examples, the entire pro-
grams operate based on memory and arithmetic operations.
In the case of fuzzer-test-suite example, the parser with vul-
nerability (CVE-2016-5180 [1]) does not require to invoke
any system call. However, depending on the fuzzer interface
and program size, non-trivial porting effort could be involved.
We note that these porting efforts can be relaxed with existing
techniques [29].

4

0k
200k
400k
600k
800k

1000k

0 5 10 15 20 25 30 35 40 45 50

E
xe

c/
se

c

core (w/ Intel SGX Card)

Figure 3: P2FAAS performance scaling with Intel SGX Card.

Fuzz-Driver exec/sec (no-sgx) exec/sec (sgx-sim) exec/sec (sgx-hw)

Toy Example 73.63K 60.22K 40.32K
Exp Evaluator 72.96K 60.12K 40.17K
C-ARES API 72.46K 59.44K 39.49K
*Numbers are based on 1M execution time (10 iteration avg).

Table 1: CPU overhead of P2FAAS

6.3 Performance Characteristics

Scaling with Intel SGX Card. To demonstrate the scala-
bility of P2FAAS, we used two Intel SGX Cards to setup a
48-core distributed P2FAAS environment. Fuzzers running
on each core share the corpus and coverage information via
network file system (NFS). Using toy fuzz-driver, we were
able to achieve near one million executions per second as
shown in Figure 3.
CPU overhead. To measure the CPU overhead of P2FAAS,
we show a comparison result with three configurations: (i)
running the fuzzer without actually using the SGX feature at
all (no-sgx), (ii) running the fuzzer inside enclave with SGX
simulation mode (sgx-sim), and (iii) running the fuzzer inside
enclave with SGX hardware mode (sgx-hw). In particular,
we measured the execution time of one million executions.
Numbers in Table 1 are the average of ten iterations.

The evaluation results show that SGX environment imposes
around 45% performance overhead. We suspect this is due to
the less optimized cache/TLB implementation.
Memory overhead. Memory usage is another potential
cause of performance degradation of P2FAAS under SGX
environment. We measure the resident set size (RSS) with and
without P2FAAS using pmap to analyze the memory overhead.

Regardless of the target program, the evaluation results give
a memory overhead of around 2MB. The memory overhead
is mainly caused by the in-memory corpus data structure,
coverage bitmap, added fuzzer runtime code, and so forth.
Such a small memory overhead is ideal for SGX environment
as the runtime memory consumption of the fuzzing instance
is more likely not to exceed SGX EPC size limitation, thus
avoiding the long-worried performance degradation caused
by SGX demand paging mechanism.

7 Discussion and Future Work
Inferring information from fuzzing inputs. Using SGX
allows P2FAAS to protect the target program and its fuzzing
inputs against the cloud provider. To further prevent the
service provider from accessing the program, P2FAAS puts
the program and the fuzzer in separate enclaves. However,

because the program still relies on the fuzzer to provide inputs,
the service provider may be able to infer the information about
the program from the inputs. At this point, P2FAAS do not
protect programs from such threats. We leave it to future
works.
Programs with large working set. Our evaluation test
cases used a reasonably small amount of memory, thus fitting
an enclave. Currently, size of SGX Enclave Page Cache
(EPC) is limited to 128MB. Instances with larger working set
that exceeds the size limitation will incur the SGX demand
paging mechanism, which is extremely expensive, slowing
down the system on average by 5 times [28]. This is harmful
to the service quality of P2FAAS. We leave the solution to
foreseeable future SGX support for larger EPC size.

8 Conclusion
Motivated from the rapidly emerging FaaS services, we pro-
pose P2FAAS to provide privacy on top. Our design demon-
strates that SGX is a promising underlying technology for
P2FAAS without harming usability and performance. As a
prototype, we implemented a P2FAAS infrastructure based
on SGX-enabled host and none-SGX host with SGX Card
extension. Our implementation and evaluation demonstrates
that P2FAAS is scalable and deployable in practice.

References
[1] CVE-2016-5180, Heap-based buffer overflow in the

ares_create_query. https://nvd.nist.gov/vuln/
detail/CVE-2016-5180.

[2] Proceedings of the 2017 Annual Network and Dis-
tributed System Security Symposium (NDSS) (San Diego,
CA, Feb.–Mar. 2017).

[3] Proceedings of the 26th USENIX Security Symposium
(Security) (Vancouver, Canada, Aug. 2017).

[4] BAUMANN, A., PEINADO, M., AND HUNT, G. Shield-
ing Applications from an Untrusted Cloud with Haven.
In Proceedings of the 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI)
(Broomfield, Colorado, Oct. 2014).

[5] FUZZBUZZ. Fuzzing on autopilot. https://fuzzbuzz.
io/, 2019.

[6] GOOGLE INC. Asylo. https://asylo.dev/, 2018.

[7] GOOGLE INC. Clusterfuzz. https://google.
github.io/clusterfuzz/, 2018.

[8] GOOGLE INC. OSS-Fuzz. https://opensource.
google.com/projects/oss-fuzz, 2019.

[9] GÖTZFRIED, J., ECKERT, M., SCHINZEL, S., AND
MÜLLER, T. Cache attacks on intel sgx. In Proceedings
of the 10th European Workshop on Systems Security
(2017).

5

https://nvd.nist.gov/vuln/detail/CVE-2016-5180
https://nvd.nist.gov/vuln/detail/CVE-2016-5180
https://fuzzbuzz.io/
https://fuzzbuzz.io/
https://asylo.dev/
https://google.github.io/clusterfuzz/
https://google.github.io/clusterfuzz/
https://opensource.google.com/projects/oss-fuzz
https://opensource.google.com/projects/oss-fuzz

[10] GRUSS, D., LETTNER, J., SCHUSTER, F., OHRI-
MENKO, O., HALLER, I., AND COSTA, M. Strong and
Efficient Cache Side-Channel Protection using Hard-
ware Transactional Memory. In Proceedings of the 26th
USENIX Security Symposium (Security) [3].

[11] HUNT, T., SONG, C., SHOKRI, R., SHMATIKOV, V.,
AND WITCHEL, E. Chiron: Privacy-preserving machine
learning as a service. arXiv preprint arXiv:1803.05961
(2018).

[12] IBM. IBM Cloud is the cloud for smarter business.
https://www.ibm.com/cloud, 2019.

[13] KIM, S., HAN, J., HA, J., KIM, T., AND HAN, D.
Enhancing Security and Privacy of Tor’s Ecosystem by
using Trusted Execution Environments. In Proceedings
of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI) (Boston, MA, Mar.
2017).

[14] KIM, S., HAN, J., HA, J., KIM, T., AND HAN, D.
SGX-Tor: A Secure and Practical Tor Anonymity Net-
work With SGX Enclaves. IEEE/ACM Transactions on
Networking (ToN) 26, 5 (Oct. 2018), 2174–2187.

[15] KNAUTH, T., STEINER, M., CHAKRABARTI, S., LEI,
L., XING, C., AND VIJ, M. Integrating remote attesta-
tion with transport layer security. CoRR abs/1801.05863
(2018).

[16] LEE, S., SHIH, M.-W., GERA, P., KIM, T., KIM,
H., AND PEINADO, M. Inferring Fine-grained Control
Flow Inside SGX Enclaves with Branch Shadowing. In
Proceedings of the 26th USENIX Security Symposium
(Security) [3].

[17] LLVM. Libfuzzer. https://llvm.org/docs/
LibFuzzer.html, 2015.

[18] MICHAÅĆ ZALEWSKI. American fuzzy lop. https:
//lcamtuf.coredump.cx/afl/, 2015.

[19] MICROSOFT. Open enclave. https://openenclave.
io/sdk/, 2018.

[20] MICROSOFT. Azure confidential comput-
ing. https://azure.microsoft.com/en-
us/solutions/confidential-compute/, 2019.

[21] MICROSOFT. Microsoft Security Risk Detection.
https://www.microsoft.com/en-us/security-
risk-detection/, 2019.

[22] OHRIMENKO, O., SCHUSTER, F., FOURNET, C.,
MEHTA, A., NOWOZIN, S., VASWANI, K., AND
COSTA, M. Oblivious multi-party machine learning on
trusted processors. In Proceedings of the 25th USENIX
Security Symposium (Security) (Austin, TX, Aug. 2016).

[23] OLEKSENKO, O., TRACH, B., KRAHN, R., SILBER-
STEIN, M., AND FETZER, C. Varys: Protecting SGX
Enclaves from Practical Side-Channel Attacks. In Pro-
ceedings of the 2018 USENIX Annual Technical Confer-
ence (ATC) (Boston, MA, July 2018).

[24] PODDAR, R., LAN, C., POPA, R. A., AND RAT-
NASAMY, S. Safebricks: Shielding network functions
in the cloud. In Proceedings of the 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI) (RENTON, MA, Apr. 2018).

[25] SEO, J., LEE, B., KIM, S., SHIH, M.-W., SHIN, I.,
HAN, D., AND KIM, T. SGX-Shield: Enabling Ad-
dress Space Layout Randomization for SGX Programs.
In Proceedings of the 2017 Annual Network and Dis-
tributed System Security Symposium (NDSS) [2].

[26] SHIH, M.-W., KUMAR, M., KIM, T., AND
GAVRILOVSKA, A. S-NFV: Securing NFV states by us-
ing SGX. In Proceedings of the 1st ACM International
Workshop on Security in SDN and NFV (New Orleans,
LA, Mar. 2016).

[27] SHIH, M.-W., LEE, S., KIM, T., AND PEINADO, M. T-
SGX: Eradicating Controlled-Channel Attacks Against
Enclave Programs. In Proceedings of the 2017 Annual
Network and Distributed System Security Symposium
(NDSS) [2].

[28] TAASSORI, M., SHAFIEE, A., AND BALASUBRAMO-
NIAN, R. Vault: Reducing paging overheads in sgx
with efficient integrity verification structures. In Pro-
ceedings of the 23st ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (Williamsburg, VA, Mar.
2018).

[29] TSAI, C.-C., PORTER, D. E., AND VIJ, M. Graphene-
sgx: A practical library os for unmodified applications
on sgx. In Proceedings of the 2017 USENIX Annual
Technical Conference (ATC) (Santa Clara, CA, July
2017).

[30] XU, W., KASHYAP, S., MIN, C., AND KIM, T. De-
signing New Operating Primitives to Improve Fuzzing
Performance. In Proceedings of the 24th ACM Confer-
ence on Computer and Communications Security (CCS)
(Vienna, Austria, Oct.–Nov. 2016).

[31] XU, Y., CUI, W., AND PEINADO, M. Controlled-
channel attacks: Deterministic side channels for un-
trusted operating systems. In Proceedings of the 36th
IEEE Symposium on Security and Privacy (Oakland)
(San Jose, CA, May 2015).

6

https://www.ibm.com/cloud
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://openenclave.io/sdk/
https://openenclave.io/sdk/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.microsoft.com/en-us/security-risk-detection/
https://www.microsoft.com/en-us/security-risk-detection/

